Mucociliary clearance (MC) is an important factor in determining nasal drug absorption and the ciliary beat of ciliated epithelial cells of the nasal mucosa is the driving force of MC. However, the relationship between MC and ciliary beat frequency (CBF) is still ambiguous. The purpose of this study was to establish an evaluation method of CBF as an index of mucociliary function and examine the relationship between MC and CBF.
View Article and Find Full Text PDFMucus on the nasal mucosa is translocated to the pharynx by ciliary beating, which is an important nonspecific defense mechanism called mucociliary clearance (MC). MC is one of the important factors determining the rate and extent of drug absorption after nasal application. The purpose of this study is to evaluate MC using rat nasal septum under physiological condition in an in vitro system.
View Article and Find Full Text PDFThe aim of this research is to clarify the influence of the viscosity of the nasal formulation on in vivo nasal drug absorption and its mechanism using an in vitro Caco-2 system. The drug solution was made viscous by the addition of dextran (Dex). The disappearance of FITC-labeled Dextran (FD, a marker of the dosing solution) applied with control solution followed monoexponential kinetics, while FD applied with Dex solution showed biexponential elimination.
View Article and Find Full Text PDFThe purpose of this study is to propose a kinetic model to predict the absorption of nasally applied drugs from their permeability to the Caco-2 monolayer (P(Caco-2)). Since a drug applied to the nose in an in vivo physiologic condition is translocated to the gastrointestinal (GI) tract by coordinated beats of cilia (mucociliary clearance, MC), the drug undergoes absorption both from the nasal cavity and from the GI tract. The detailed MC of the rat was examined, using inulin as a marker of the applied solution.
View Article and Find Full Text PDFDrugs applied to the nose in in vivo physiologic condition undergo absorption from the nasal cavity and the gastrointestinal (GI) tract because drug solution in the nasal cavity, together with mucus layer, is cleared to pharynx and then to the GI tract by coordinated beat of the cilia on nasal epithelial cells. The purpose of this study was to develop evaluate the contribution of the nasal cavity and the GI tract to drug absorption following nasal application and to clarify the relation to the transepithelial permeability of the drug (the permeability to Caco-2 monolayer, P(Caco-2)). Male Wistar rats received intravenous, nasal, and oral drug administration and drug concentration-time profiles in plasma were determined.
View Article and Find Full Text PDFSeishin Shinkeigaku Zasshi
March 2004
Externalization has been one of the effective methods in the fields of brief therapy, family therapy, and psycho-education in recent years. In this study, we investigated the efficacy of intervention with externalization at the first stage of therapy in 25 patients with eating disorders. The subjects consisted of 11 patients with anorexia nervosa (AN) and 14 with bulimia nervosa (BN).
View Article and Find Full Text PDFA chitosan dispersed system (CDS), which was composed of active ingredient reservoir and the outer drug release-regulating layer dispersing chitosan powder in hydrophobic polymer, was newly developed for colon-specific drug delivery. An aminoalkyl methacrylate copolymer RS (Eudragit) RS) was selected as a hydrophobic polymer because it is hardly dissolved in acidic medium in which easily dissolves chitosan. In order to obtain the bi-functional releasing characteristics, i.
View Article and Find Full Text PDF