Biol Pharm Bull
September 2022
Here, we searched for microRNAs (miRNAs) in silico that could interact with SLC11A2 mRNA, a solute carrier (SLC) iron-ion transporter, and investigated their effects on SLC11A2 gene expression using the cultured human colon carcinoma cell line, Caco-2. In silico analysis using the miRWalk2.0 database revealed that several types of miRNAs interact with the human SLC11A2 gene; we focused on three miRNAs, miR-149-5p, miR-362-5p, and miR-539-5p as candidates in this study.
View Article and Find Full Text PDFWe previously reported that dopamine (DA) attenuated lipopolysaccharide (LPS)-induced expression of proinflammatory cytokines through the formation of DA quinone (DAQ) in murine microglial cell line BV-2 and primary murine microglial cells. To reveal whether DA inhibits the expression of proinflammatory cytokines of microglial cells through the formation of DAQ in the central nervous system (CNS), in this study, we examined the effect of DAQ on LPS-induced mRNA expression of proinflammatory cytokines in C57BL/6 mouse brain under two experimental conditions: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration and l-dopa/carbidopa administration. Acute MPTP administration reduced the number of tyrosine hydroxylase-positive cells in the substantia nigra, and decreased the level of quinoprotein, an indicator of DAQ formation, in the striatum.
View Article and Find Full Text PDFMany reports have indicated that dopamine has immunomodulatory effects on peripheral immune cells. The purpose of this study was to reveal the immunomodulatory effect of dopamine on the expression of proinflammatory cytokines in microglial cells, which are the immune cells of the central nervous system. In murine microglial cell line BV-2 cells, pretreatment with dopamine for 24 h attenuated the lipopolysaccharide (LPS)-induced expression of proinflammatory cytokines such as tumor-necrosis factor-α, interleukin-1β, and interleukin-6.
View Article and Find Full Text PDFDopamine (DA) has been suggested to modulate functions of glial cells including microglial cells. To reveal the regulatory role of DA in microglial function, in the present study, we investigated the effect of DA on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in murine microglial cell line BV-2. Pretreatment with DA for 24 h concentration-dependently attenuated LPS-induced NO production in BV-2 cells.
View Article and Find Full Text PDF