Mesenchymal stem cells (MSCs) are used as a major source for cell therapy, and its application is expanding in various diseases. On the other hand, reliable method to evaluate quality and therapeutic properties of MSC is limited. In this study, we focused on TWIST1 that is a transcription factor regulating stemness of MSCs and found that the transmembrane protein LRRC15 tightly correlated with the expression of TWIST1 and useful to expect TWIST1-regulated stemness of MSCs.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are somatic stem cells used in cell transplantation therapy for tissue injuries and inflammatory diseases because of their ability to support tissue regeneration and to suppress inflammation. While their applications are expanding, needs for automation of culture procedures with reduction of animal-derived materials to meet stable quality and suppliability are also increasing. On the other hand, the development of molecules that safely support cell adherence and expansion on a variety of interfaces under the serum-reduced culture condition remains a challenge.
View Article and Find Full Text PDFSarcopenia is an aging-associated attenuation of muscular volume and strength and is the major cause of frailty and falls in elderly individuals. The number of individuals with sarcopenia is rapidly increasing worldwide; however, little is known about the underlying mechanisms of the disease. Sarcopenia often copresents with obesity, and some patients with sarcopenia exhibit accumulation of peri-organ or intra-organ adipose tissue as ectopic fat deposition, including atrophied skeletal muscle.
View Article and Find Full Text PDFFrailty of the locomotory organs has become a widespread problem in the geriatric population. The major factor leading to frailty is an age-associated decrease in muscular mass and a reduced number of muscular cells and myofibers. In aged muscular tissues, muscular satellite cells (MuSCs) are reduced due to abnormalities in their self-renewal and the induction of apoptosis.
View Article and Find Full Text PDFBackground: The main function of folate receptor α (FOLRα) has been considered to mediate intracellular folate uptake and induce tumor cell proliferation. Given the broad spectrum of expression among malignant tumors, including gastric cancer (GC) but not in normal tissue, FOLRα represents an attractive target for tumor-selective drug delivery. However, the efficacy of anti-FOLRα monoclonal antibodies (mAbs) has not been proved so far, with the reason for this failure remaining unclear, raising the need for a better understanding of FOLRα function.
View Article and Find Full Text PDFBackground: Using the rat sciatic nerve model, sliced nerves of different thickness was combined to a biodegradable nerve conduit and the amount of nerve fragment necessary to promote nerve regeneration was investigated.
Materials And Methods: Harvested sciatic nerve (n = 6) was processed in sliced nerve of the different width; 2, 1, 0.5 mm, respectively.
Background: Using the rat sciatic nerve model, the difference in outcome using a nerve segment either sliced open or minced with a blade incorporated into a nerve conduit were compared and the relative effects upon the rate and completeness of the nerve regeneration was determined.
Materials And Methods: A 10-mm gap was created in the rat sciatic nerve and bridged with a biodegradable nerve conduit. Segments of the resected nerve (2-mm lengths) were prepared by either slicing the nerve with one longitudinal cut or by scalpel mincing of the nerve tissue, with insertion of the prepared nerve segment into the center of the conduit.
Elevation of the levels of reactive oxygen species (ROS) is a major tissue-degenerative phenomenon involved in aging and aging-related diseases. The detailed mechanisms underlying aging-related ROS generation remain unclear. Presently, the expression of microRNA (miR)-142-5p was significantly upregulated in bone marrow mesenchymal stem cells (BMMSCs) of aged mice.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2020
Removal of dysfunctional mitochondria is essential step to maintain normal cell physiology, and selective autophagy in mitochondria, called mitophagy, plays a critical role in quality control of mitochondria. While in several diseases and aging, disturbed mitophagy has been observed. In stem cells, accumulation of damaged mitochondria can lead to deterioration of stem cell properties.
View Article and Find Full Text PDFBone marrow-derived mesenchymal stem cells (BMMSCs) are multipotent stem cells capable of differentiation into a variety of cell types, proliferation, and production of clinically useful secretory factors. These advantages make BMMSCs highly useful for cell transplantation therapy. However, the molecular network underlying BMMSC proliferation remains poorly understood.
View Article and Find Full Text PDFA disintegrin and metalloproteinase 12 (ADAM12) is known to be involved in chondrocyte proliferation and maturation; however, the mechanisms are not fully understood. In this study, expression and localization of ADAM12 during chondrocyte differentiation were examined in the mouse growth plate by immunohistochemistry. Adam12 expression during ATDC5 chondrogenic differentiation was examined by real-time PCR and compared with the expression pattern of type X collagen.
View Article and Find Full Text PDFTissue renewal and muscle regeneration largely rely on the proliferation and differentiation of muscle stem cells called muscular satellite cells (MuSCs). MuSCs are normally quiescent, but they are activated in response to various stimuli, such as inflammation. Activated MuSCs proliferate, migrate, differentiate, and fuse to form multinucleate myofibers.
View Article and Find Full Text PDFInflammation-induced reactive oxygen species (ROS) are implicated in cellular dysfunction and an important trigger for aging- or disease-related tissue degeneration. Inflammation-induced ROS in stem cells lead to deterioration of their properties, altering tissue renewal or regeneration. Pathological ROS generation can be induced by multiple steps, and dysfunction of antioxidant systems is a major cause.
View Article and Find Full Text PDFIntracerebral inflammation resulting from injury or disease is implicated in disruption of neural regeneration and may lead to irreversible neuronal dysfunction. Analysis of inflammation-related microRNA profiles in various tissues, including the brain, has identified miR-155 among the most prominent miRNAs linked to inflammation. Here, we hypothesize that miR-155 mediates inflammation-induced suppression of neural stem cell (NSC) self-renewal.
View Article and Find Full Text PDFThe objective was to investigate the levels of TWIST1 in normal and OA cartilage and examine its role in regulating gene expression in chondrocytes. Human cartilage tissues and chondrocytes were obtained at autopsy from normal knee joints and from OA-affected joints at the time of total knee arthroplasty. TWIST1 expression was increased in human OA knee cartilage compared to normal knee cartilage.
View Article and Find Full Text PDFThe cell adhesion molecule Cadherin 2 (Cdh2) plays important roles in somatic cell adhesion, proliferation and migration. Cdh2 is also highly expressed in mouse epiblast stem cells (mEpiSCs), but its function in these cells is unknown. To understand the function of Cdh2 in mEpiSCs, we compared the expression of pluripotency-related genes in mEpiSCs and mouse embryonic stem cells (mESCs) after either Cdh2 knockdown or Cdh2 over-expression.
View Article and Find Full Text PDFOxidative stress within the arthritis joint has been indicated to be involved in generating mediators for tissue degeneration and inflammation. COX-2 is a mediator in inflammatory action, pain and some catabolic reactions in inflamed tissues. Here, we demonstrated a direct relationship between oxidative stress and Cox-2 expression in the bovine synovial fibroblasts.
View Article and Find Full Text PDFOne important pharmacological function of hyaluronic acid (HA) in chondrocytes is reduction of cellular superoxide generation and accumulation. Here we demonstrated a relationship between HA supplementation and accumulation of Nuclear factor-erythroid-2-related factor 2 (Nrf2), which is a master transcription factor in cellular redox reactions, in cultured chondrocytes derived from bovine joint cartilage. In HA-treated chondrocytes, expression of Nrf2 and its downstream genes was upregulated.
View Article and Find Full Text PDFIn mammalian ovaries, many immature follicles remain after the dominant follicles undergo ovulation. Here we report the successful production of rabbit embryonic stem cells (ESCs) from oocytes produced by in vitro culture of immature follicles and subsequent in vitro maturation treatment. In total, we obtained 53 blastocysts from oocytes that received intracytoplasmic sperm injection followed by in vitro culture.
View Article and Find Full Text PDFEmbryonic stem cells (ESCs) have the potential to be used as an unlimited cell source for cell transplantation therapy, as well as for studying mechanisms of disease and early mammalian development. However, applications involving ESCs have been limited by the lack of reliable differentiation methods in many cases. Mesenchymal stem cells (MSCs) have also emerged as a promising cell source, but as suggested in recent studies, these cells display limited potential for proliferation and differentiation, thereby limiting their usefulness in the clinic and in the laboratory.
View Article and Find Full Text PDFObjective: Excessive mechanical stress on the cartilage causes the degradation of the matrix, leading to the osteoarthritis (OA). Matrix metalloproteinases 13 (MMP13) is a major catalytic enzyme in OA and p38 plays an important role in its induction. However, precise pathway inducing p38 activation has not been elucidated.
View Article and Find Full Text PDFMechanical stimulation has been shown to regulate the proliferation and differentiation of stem cells. However, the effects of the mechanical stress on the stemness or related molecular mechanisms have not been well determined. Pluripotent stem cells such as embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are used as good materials for cell transplantation therapy and research of mammalian development, since they can self-renew infinitely and differentiate into various cell lineages.
View Article and Find Full Text PDFRecently, an additional type of pluripotent stem cell-line derived from mouse embryos has been established and termed epiblast stem cell (EpiSC), and is expected to be an important tool for studying the mechanisms of maintenance of pluripotency since they depend on basic fibroblast growth factor-MAPK and Activin A-Smad2/3 signaling to maintain pluripotency, unlike mouse embryonic stem cells (ESCs). Further, because of the similarities between mouse EpiSCs and human ESCs, EpiSCs are expected to be effective experimental models for human stem cell therapy. Recently, study for conversion from ESC state to EpiSC state or reversion from EpiSC state to ESC state has attracted interest since these techniques may lead to increasing the potential of pluripotent stem cells and our knowledge about their developmental status.
View Article and Find Full Text PDFAn efficient total synthesis of (+)-nafuredin-γ has been achieved in 10 steps from (E)-3-(tributylstannyl)propenal. The synthesis features direct construction of an anti-1,2-diol moiety via a Ti-mediated aldol reaction of lactyl derivative and rapid fragment assembly, which relied on well-established Pd chemistry.
View Article and Find Full Text PDF