Publications by authors named "Yuta Murotani"

The manipulation of solid states using intense infrared or terahertz light fields is a pivotal area in contemporary ultrafast photonics research. While conventional circular polarization has been well explored, the potential of counterrotating bicircular light remains widely underexplored, despite growing interest in theory. In the mid-infrared or multi-terahertz region, experimental challenges lie in difficulties in stabilizing the relative phase between two-color lights and the lack of available polarization elements.

View Article and Find Full Text PDF

We have newly developed, to the best of our knowledge, a detection method for broadband infrared pulses based on sum-frequency generation spectroscopy in reflection geometry, which can avoid a restriction of the detection bandwidth originating from the phase mismatch that is inevitable for the upconversion in transmission geometry. Using a GaAs crystal, we successfully demonstrated the ultra-broadband detection of the infrared pulses generated from a two-color laser-induced air plasma filament in a region from 300 to 3300 cm. With the advantage of ultra-short infrared pulses, the present detection method holds promise for application to time-resolved, ultra-broadband vibrational spectroscopy.

View Article and Find Full Text PDF

We demonstrated characterizing the electric field waveform of multi-terahertz pulses (10 - 50 THz) as vector quantities in the time domain by applying the polarization modulated electro-optic sampling (POMEOS) method. The problem of an ultrabroadband gate pulse was solved by modifying the fitting function in POMEOS, and its validity was confirmed through numerical simulations. High accuracy and precision of approximately 1 mrad with 3 s accumulation were demonstrated.

View Article and Find Full Text PDF

We report the first observation of the spin Hall conductivity spectrum in GaAs at room temperature. Our terahertz polarimetry with a precision of several μrads resolves the Faraday rotation of terahertz pulses arising from the inverse spin Hall effect of optically injected spin-polarized electrons. The obtained spin Hall conductivity spectrum exhibits an excellent quantitative agreement with theory, demonstrating a crossover in the dominant origin from impurity scattering in the dc regime to the intrinsic Berry-curvature mechanism in the terahertz regime.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the chirality of massless fermions in Dirac semimetals, revealing its importance for understanding their behavior and potential applications.
  • It shows that circularly polarized light can create an isospin polarization, which labels the chirality of these carriers, in the Dirac semimetal CdAs.
  • The findings indicate a long scattering time and decay time for the isospin, suggesting that Dirac semimetals could have promising uses in future tech due to their robust and reversible properties.
View Article and Find Full Text PDF

We experimentally elucidate the origin of the anomalous Hall conductivity in a three-dimensional Dirac semimetal, Cd_{3}As_{2}, driven by circularly polarized light. Using time-resolved terahertz Faraday rotation spectroscopy, we determine the transient Hall conductivity spectrum with special attention to its sign. Our results clearly show the dominance of direct photocurrent generation assisted by the terahertz electric field.

View Article and Find Full Text PDF

Using broadband (12-45 THz) multi-terahertz spectroscopy, we show that stimulated Rayleigh scattering dominates the transient optical conductivity of cadmium arsenide, a Dirac semimetal, under an optical driving field at 30 THz. The characteristic dispersive line shape with net optical gain is accounted for by optical transitions between light-induced Floquet subbands, strikingly enhanced by the longitudinal plasma mode. Stimulated Rayleigh scattering with an unprecedentedly large refractive index change may pave the way for slow light generation in conductive solids at room temperature.

View Article and Find Full Text PDF

The electromagnetic response of Dirac semimetals in the infrared and terahertz frequency ranges is attracting growing interest for potential applications in optoelectronics and nonlinear optics. The interplay between the free-carrier response and interband transitions in the gapless, linear dispersion relation plays a key role in enabling novel functionalities. Here we investigate ultrafast dynamics in thin films of a photoexcited Dirac semimetal CdAs by probing the broadband response functions as complex quantities in the multiterahertz region (10-45 THz, 40-180 meV, or 7-30 μm), which covers the crossover between the inter- and intraband response.

View Article and Find Full Text PDF

We investigate the photon-dressed state of excitons in bulk GaAs by optical pump-probe spectroscopy. We reveal that the high-energy branch of the dressed states continuously evolves into a singular enhancement at the absorption edge in the high-density region where the exciton picture is no longer valid. Comparing the experimental result with a simulation based on semiconductor Bloch equations, we show that the dressed state in such a high-density region is better viewed as a Bardeen-Cooper-Schrieffer-like state, which has been theoretically anticipated to exist over decades.

View Article and Find Full Text PDF

The Higgs mode in superconductors, i.e., the collective amplitude mode of the order parameter, does not associate with charge nor spin fluctuations, therefore it does not couple to the electromagnetic field in the linear response regime.

View Article and Find Full Text PDF