We propose and experimentally demonstrate the generation of enhanced optical springs using the optical Kerr effect. A nonlinear optical crystal is inserted into a Fabry-Perot cavity with a movable mirror, and a chain of second-order nonlinear optical effects in the phase-mismatched condition induces the Kerr effect. The optical spring constant is enhanced by a factor of 1.
View Article and Find Full Text PDFIntracavity squeezing is a promising technique that may improve the sensitivity of gravitational wave detectors and cool optomechanical oscillators to the ground state. However, the photothermal effect may modify the occurrence of optomechanical coupling due to the presence of a nonlinear optical crystal in an optical cavity. We propose a novel method to predict the influence of the photothermal effect by measuring the susceptibility of the optomechanical oscillator and identifying the net optical spring constant and photothermal absorption rate.
View Article and Find Full Text PDFThis paper reports on the design and characteristics of a compact module integrating an optical displacement sensor and an electromagnetic actuator for use with vibration-isolation systems installed in KAGRA, the 3-km baseline gravitational-wave detector in Japan. In the technical concept, the module belongs to a family tree of similar modules used in other interferometric gravitational-wave detector projects. After the initial test run of KAGRA in 2016, the sensor part, which is a type of slot sensor, was modified by increasing the spacing of the slot from 5 mm to 15 mm to avoid the risk of mechanical interference with the sensor flag.
View Article and Find Full Text PDFPhys Rev Lett
September 2019
Axion dark matter differentiates the phase velocities of the circular-polarized photons. In this Letter, a scheme to measure the phase difference by using a linear optical cavity is proposed. If the scheme is applied to the Fabry-Pérot arm of Advanced-LIGO-like (Cosmic-Explorer-Like) gravitational wave detector, the potential sensitivity to the axion-photon coupling constant, g_{aγ}, reaches g_{aγ}≃8×10^{-13} GeV^{-1}(4×10^{-14} GeV^{-1}) at the axion mass m≃3×10^{-13} eV (2×10^{-15} eV) and remains at around this sensitivity for three orders of magnitude in mass.
View Article and Find Full Text PDFGravity generated by large masses has been observed using a variety of probes from atomic interferometers to torsional balances. However, gravitational coupling between small masses has never been observed so far. Here, we demonstrate sensitive displacement sensing of the Brownian motion of an optically trapped 7 mg pendulum motion whose natural quality factor is increased to 10^{8} through dissipation dilution.
View Article and Find Full Text PDFWe propose a novel experiment to search for axion dark matter that differentiates the phase velocities of the left- and right-handed polarized photons. Our optical cavity measures the difference of the resonant frequencies between two circular polarizations of the laser beam. The design of our cavity adopts a double-pass configuration to realize a null experiment and give a high common mode rejection of environmental disturbances.
View Article and Find Full Text PDFWe propose a new method to optically levitate a macroscopic mirror with two vertical Fabry-Pérot cavities linearly aligned. This configuration gives the simplest possible optical levitation in which the number of laser beams used is the minimum of two. We demonstrate that reaching the standard quantum limit (SQL) of a displacement measurement with our system is feasible with current technology.
View Article and Find Full Text PDFThe preparation of a mechanical oscillator driven by quantum back-action is a fundamental requirement to reach the standard quantum limit (SQL) for force measurement, in optomechanical systems. However, thermal fluctuating force generally dominates a disturbance on the oscillator. In the macroscopic scale, an optical linear cavity including a suspended mirror has been used for the weak force measurement, such as gravitational-wave detectors.
View Article and Find Full Text PDFA search for Lorentz violation in electrodynamics was performed by measuring the resonant frequency difference between two counterpropagating directions of an optical ring cavity. Our cavity contains a dielectric element, which makes our cavity sensitive to the violation. The laser frequency is stabilized to the counterclockwise resonance of the cavity, and the transmitted light is reflected back into the cavity for resonant frequency comparison with the clockwise resonance.
View Article and Find Full Text PDF