Publications by authors named "Yuta Chigi"

Mammalian germ cells are derived from primordial germ cells (PGCs) and ensure species continuity through generations. Unlike irreversible committed mature germ cells, migratory PGCs exhibit a latent pluripotency characterized by the ability to derive embryonic germ cells (EGCs) and form teratoma. Here, we show that inhibition of p38 mitogen-activated protein kinase (MAPK) by chemical compounds in mouse migratory PGCs enables derivation of chemically induced Embryonic Germ-like Cells (cEGLCs) that do not require conventional growth factors like LIF and FGF2/Activin-A, and possess unique naïve pluripotent-like characteristics with epiblast features and chimera formation potential.

View Article and Find Full Text PDF

Mouse embryonic stem cells (mESCs) have been widely used as a model system to study the basic biology of pluripotency and to develop cell-based therapies. Traditionally, mESCs have been cultured in a medium supplemented with fetal bovine serum (FBS). However, serum with its inconsistent chemical composition has been problematic for reproducibility and for studying the role of specific components.

View Article and Find Full Text PDF

To produce muscle fibers for cultured meat on a large scale, it is important to expand myoblasts in a serum-reduced or serum-free medium to avoid cost, ethical, and environmental issues. Myoblasts such as C2C12 cells differentiate quickly into myotubes and lose their ability to proliferate when the serum-rich medium is replaced with a serum-reduced medium. This study demonstrates that Methyl-β-cyclodextrin (MβCD), a starch-derived agent that depletes cholesterol, can inhibit further differentiation of myoblasts at the MyoD-positive stage by reducing plasma membrane cholesterol on C2C12 cells and primary cultured chick muscle cells.

View Article and Find Full Text PDF

Pluripotent stem cells (PSCs) are in vitro adaptations of in vivo pluripotency continuum and can be broadly classified into naïve state characteristic of pre-implantation epiblast and primed state resembling peri-gastrulation epiblasts. Naïve and primed PSCs differ in their cellular and molecular characteristics, e.g.

View Article and Find Full Text PDF

Leydig cells play a pivotal function in the synthesis of a male sex steroid, testosterone. The ability of the steroid production is dependent on the expression of the steroidogenic genes, such as HSD3B (3β-hydroxysteroid dehydrogenase/Δ5- Δ4 isomerase). It has been established that two different types of Leydig cells, fetal Leydig cells (FLCs) and adult Leydig cells (ALCs), are developed in mammalian testes.

View Article and Find Full Text PDF

X inactive-specific transcript () is a long noncoding RNA that plays an essential role in X chromosome inactivation. Although RNA, like common protein-coding mRNAs, is transcribed by RNA polymerase II, spliced and polyadenylated, it is retained in the nucleus and associates with the X chromosome it originates from. It has been assumed that RNA recruits proteins involved in epigenetic modifications and chromatin compaction to the X chromosome.

View Article and Find Full Text PDF