Publications by authors named "Yusuke Yamanoi"

In recent years, the functionality of myoelectric prosthetic hands has improved as motors have become smaller and controls have become more advanced. Attempts have been made to reproduce the rotation and flexion of the wrist by adding degrees of freedom to the wrist joint. However, it is still difficult to fully reproduce the functionality of the wrist joint owing to the weight of the prosthesis and size limitations.

View Article and Find Full Text PDF

We herein report on the application of a novel motorized prosthetic hand in a child with upper extremity phocomelia.

View Article and Find Full Text PDF

The usability of a prosthetic hand differs significantly from that of a real hand. Moreover, the complexity of manipulation increases as the number of degrees of freedom to be controlled increases, making manipulation with biological signals extremely difficult. To overcome this problem, users need to select a grasping posture that is adaptive to the object and a stable grasping method that prevents the object from falling.

View Article and Find Full Text PDF

In recent years, myoelectric hands have become multi-degree-of-freedom (DOF) devices, which are controlled via machine learning methods. However, currently, learning data for myoelectric hands are gathered manually and thus tend to be of low quality. Moreover, in the case of infants, gathering accurate learning data is nearly impossible because of the difficulty of communicating with them.

View Article and Find Full Text PDF

An amputated nerve transferred to a nearby muscle produces a transcutaneously detectable electromyographic signal corresponding to the transferred nerve; this technique is known as targeted muscle reinnervation (TMR). There are 2 issues to overcome to improve this technique: the caliber and the selectivity of the transferred nerve. It is optimal to select and transfer each motor fascicle to achieve highly developed myoelectric arms with multiple degrees-of-freedom motion.

View Article and Find Full Text PDF

This paper proposes the method of hand posture discrimination and grip force estimation by means of Selective Linear-Regression Model. Generally, myoelectric hands which discriminate hand posture and estimate grip force at the same time result in unsatisfying results because of complication of EMG signals. Therefore, most of myoelectric hands can control either the force or the posture.

View Article and Find Full Text PDF