A wide range of bacteria possess virulence factors such as aminoacyl-tRNA transferases (ATTs) that are capable of rerouting aminoacyl-transfer RNAs away from protein synthesis to conjugate amino acids onto glycerolipids. We recently showed that, although these pathways were thought to be restricted to bacteria, higher fungi also possess ergosteryl-3β-O-L-aspartate synthases (ErdSs), which transfer the L-Asp moiety of aspartyl-tRNA onto the 3β-OH group of ergosterol (Erg), yielding ergosteryl-3β-O-L-aspartate (Erg-Asp). Here, we report the discovery, in fungi, of a second type of fungal sterol-specific ATTs, namely, ergosteryl-3β-O-glycine (Erg-Gly) synthase (ErgS).
View Article and Find Full Text PDFAminoacylated ergosterol such as 1-ergosteryl aspartate (Erg-Asp) is a new lipid component recently discovered in fungi. In order to study physiological functions of this novel sterol derivative and to develop potential antifungal agents, we established the method to synthesize aminoacylated ergosterol derivatives. Herein, we report the synthesis of Erg-Asp as well as some other aminoacylated ergosterols (Erg-Gly, Erg-Ala, Erg-Leu, Erg-Ile, and Erg-Val) using Boc protected amino acids.
View Article and Find Full Text PDFImperata cylindrica is known to produce a pair of triterpenes, isoarborinol and fernenol, that exhibit identical planar structures but possess opposite stereochemistry at six of the nine chiral centers. These differences arise from a boat or a chair cyclization of the B-ring of the substrate. Herein, we report the characterization of three OSC genes from I.
View Article and Find Full Text PDFAminoacyl-tRNA synthetases (aaRSs) play essential roles in protein translation. In addition, numerous aaRSs (mostly in vertebrates) have also been discovered to possess a range of non-canonical functions. Very few studies have been conducted to elucidate or characterize non-canonical functions of plant aaRSs.
View Article and Find Full Text PDFDiverting aminoacyl-transfer RNAs (tRNAs) from protein synthesis is a well-known process used by a wide range of bacteria to aminoacylate membrane constituents. By tRNA-dependently adding amino acids to glycerolipids, bacteria change their cell surface properties, which intensifies antimicrobial drug resistance, pathogenicity, and virulence. No equivalent aminoacylated lipids have been uncovered in any eukaryotic species thus far, suggesting that tRNA-dependent lipid remodeling is a process restricted to prokaryotes.
View Article and Find Full Text PDFCucurbitacins are highly oxygenated triterpenoids characteristic of plants in the family Cucurbitaceae and responsible for the bitter taste of these plants. Fruits of bitter melon () contain various cucurbitacins possessing an unusual ether bridge between C5 and C19, not observed in other Cucurbitaceae members. Using a combination of next-generation sequencing and RNA-Seq analysis and gene-to-gene co-expression analysis with the ConfeitoGUIplus software, we identified three P450 genes, , , and , expected to be involved in cucurbitacin biosynthesis.
View Article and Find Full Text PDFInhibition of myostatin is a promising strategy for treatment of muscle atrophic disorders. We had already identified a 23-mer peptide () as a synthetic myostatin inhibitor, and structure-activity relationship studies with afforded a potent 22-mer peptide derivative (). Herein, we report the shortest myostatin inhibitory peptide so far.
View Article and Find Full Text PDFPurpose: We quantified interfractional movements of the prostate, seminal vesicles (SVs), and rectum during computed tomography (CT) image-guided proton therapy for prostate cancer and studied the range variation in opposed lateral proton beams.
Materials/methods: We analyzed 375 sets of daily CT images acquired throughout the proton therapy treatment of ten patients. We analyzed daily movements of the prostate, SVs, and rectum by simulating three image-matching strategies: bone matching, prostate center (PC) matching, and prostate-rectum boundary (PRB) matching.
Purpose: To evaluate the effectiveness of CT image-guided proton radiotherapy for prostate cancer by analyzing the positioning uncertainty and assessing daily dose change due to anatomical variations.
Materials And Methods: Patients with prostate cancer were treated by opposed lateral proton beams based on a passive scattering method using an in-room CT image-guided system. The system employs a single couch for both CT scanning and beam delivery.
Myostatin, a negative regulator of skeletal muscle growth, is a promising target for treating muscle atrophic disorders. Recently, we discovered a minimal myostatin inhibitor (WRQNTRYSRIEAIKIQILSKLRL-amide) derived from positions 21-43 of the mouse myostatin prodomain. We previously identified key residues (N-terminal Trp, rodent-specific Tyr, and all aliphatic amino acids) required for effective inhibition through structure-activity relationship (SAR) studies based on and characterized a 3-fold more potent inhibitor bearing a 2-naphthyloxyacetyl group at position 21.
View Article and Find Full Text PDFPurpose/objective(s): Accurate and reproducible positioning of the breast is difficult due to its deformability and softness; thus, targeting a breast tumor or tumor bed with fractionated radiotherapy using external beam radiation is difficult. The aim of this study was to develop a novel bra to aid in breast immobilization in the prone position.
Materials & Methods: To assess the accuracy of prone position fixation of breast tumors, 33 breast cancer patients with 34 lesions were recruited.
Ferns are known to produce onoceroids including onoceranes and serratanes having unusual structures among triterpenes. From the fern Lycopodium clavatum, a novel onoceroid synthase gene was cloned that showed high sequence identity with a previously identified α-onocerin synthase. Functional analysis by coexpression with pre-α-onocerin synthase in yeast led to the production of tohogenol and serratenediol.
View Article and Find Full Text PDFInhibition of myostatin, which negatively regulates skeletal muscle growth, is a promising strategy for the treatment of muscle atrophic disorders, such as muscular dystrophy, cachexia and sarcopenia. Recently, we identified peptide A (H-WRQNTRYSRIEAIKIQILSKLRL-NH2 ), the 23-amino-acid minimum myostatin inhibitory peptide derived from mouse myostatin prodomain, and highlighted the importance of its N-terminal tryptophan residue for the effective inhibition. In this study, we synthesized a series of acylated peptide derivatives focused on the tryptophan residue to develop potent myostatin inhibitors.
View Article and Find Full Text PDFOnocerin is known for its unusual structure among triterpenoids, with a symmetrical structure that is formed by cyclizations at the both termini of dioxidosqualene. The nature of the enzyme catalyzing these unusual cyclizations has remained elusive for decades. Here, we report the cloning of genes responsible for these reactions; they exhibited unprecedented substrate specificities among oxidosqualene cyclase family members.
View Article and Find Full Text PDFOxidosqualene cyclases (OSCs) catalyze the cyclization of an acyclic substrate into various polycyclic triterpenes through a series of cation-π cyclization and 1,2-rearrangement processes. The mechanisms by which OSCs control the fate of intermediate carbocation to generate each specific triterpene product have not yet been determined. The formation of ubiquitous sterol precursors in plants, cycloartenol and Cucurbitaceae-specific cucurbitadienol, only differs by the extent of the 1,2-rearrangement of methyl and hydride.
View Article and Find Full Text PDF