Potassium ion (K) is the most abundant metal ion in cells and plays an indispensable role in practically all biological systems. Although there have been reports of both synthetic and genetically encoded fluorescent K indicators, there remains a need for an indicator that is genetically targetable, has high specificity for K versus Na, and has a high fluorescent response in the red to far-red wavelength range. Here, we introduce a series of chemigenetic K indicators, designated as the HaloKbp1 series, based on the bacterial K-binding protein (Kbp) inserted into HaloTag7 self-labeled with environmentally sensitive rhodamine derivatives.
View Article and Find Full Text PDFAstrocytes control brain activity via both metabolic processes and gliotransmission, but the physiological links between these functions are scantly known. Here we show that endogenous activation of astrocyte type-1 cannabinoid (CB1) receptors determines a shift of glycolysis towards the lactate-dependent production of D-serine, thereby gating synaptic and cognitive functions in male mice. Mutant mice lacking the CB1 receptor gene in astrocytes (GFAP-CB1-KO) are impaired in novel object recognition (NOR) memory.
View Article and Find Full Text PDFThe development of new or improved single fluorescent protein (FP)-based biosensors (SFPBs), particularly those with excitation and emission at near-infrared wavelengths, is important for the continued advancement of biological imaging applications. In an effort to accelerate the development of new SFPBs, we report modified transposons for the transposase-based creation of libraries of FPs randomly inserted into analyte binding domains, or vice versa. These modified transposons feature ends that are optimized to minimize the length of the linkers that connect the FP to the analyte binding domain.
View Article and Find Full Text PDFl-Lactate is a monocarboxylate produced during the process of cellular glycolysis and has long generally been considered a waste product. However, studies in recent decades have provided new perspectives on the physiological roles of l-lactate as a major energy substrate and a signaling molecule. To enable further investigations of the physiological roles of l-lactate, we have developed a series of high-performance (Δ/ = 15 to 30 ), intensiometric, genetically encoded green fluorescent protein (GFP)-based intracellular l-lactate biosensors with a range of affinities.
View Article and Find Full Text PDFDigital coherent transmission features a very large transmission bandwidth and has played a main role in core optical transmission networks. With the progress of semiconductor technologies, practical coherent transceivers with rates over 100 Gbaud are becoming feasible. With such advances, the transceiver components must have lower power consumption and lower costs, and it becomes important to know how each component contributes to the overall transmission performance.
View Article and Find Full Text PDFL-Lactate is increasingly appreciated as a key metabolite and signaling molecule in mammals. However, investigations of the inter- and intra-cellular dynamics of L-lactate are currently hampered by the limited selection and performance of L-lactate-specific genetically encoded biosensors. Here we now report a spectrally and functionally orthogonal pair of high-performance genetically encoded biosensors: a green fluorescent extracellular L-lactate biosensor, designated eLACCO2.
View Article and Find Full Text PDFThe development of a new materials platform capable of sustaining the functionality of proteinous sensor molecules over an extended period without being affected by biological contaminants in living systems, such as proteases, is highly demanded. In this study, our primary focus was on fabricating new core-shell fibremats using unique polymer materials, capable of functionalizing encapsulated sensor proteins while resisting the effects of proteases. The core-fibre parts of core-shell fibremats were made using a newly developed post-crosslinkable water-soluble copolymer, poly(2-hydroxypropyl methacrylamide)--poly(diacetone methacrylamide), and the bifunctional crosslinking agent, adipic dihydrazide, while the shell layer of the nanofibers was made of nylon 6.
View Article and Find Full Text PDFFluorescent protein (FP)-based biosensors are genetically encoded tools that enable the imaging of biological processes in the context of cells, tissues, or live animals. Though widely used in biological research, practically all existing biosensors are far from ideal in terms of their performance, properties, and applicability for multiplexed imaging. These limitations have inspired researchers to explore an increasing number of innovative and creative ways to improve and maximize biosensor performance.
View Article and Find Full Text PDFIn the evaluation of endolymphatic hydrops (EH) using magnetic resonance (MR) imaging, hybrid of reversed image of positive endolymph signal and native image of perilymph signal multiplied with heavily T2-weighted MR cisternography (HYDROPS-Mi2) imaging with the intravenous administration of a gadolinium-based contrast agent (IV-GBCA) has been utilized. Recently, MR cisternography (MRC) without GBCA has been proposed as a potential alternative method. However, the feasibility of EH evaluation by MRC without GBCA has not been established.
View Article and Find Full Text PDFFar-red and near-infrared (NIR) genetically encoded calcium ion (Ca ) indicators (GECIs) are powerful tools for in vivo and multiplexed imaging of neural activity and cell signaling. Inspired by a previous report to engineer a far-red fluorescent protein (FP) from a biliverdin (BV)-binding NIR FP, we have developed a far-red fluorescent GECI, designated iBB-GECO1, from a previously reported NIR GECI. iBB-GECO1 exhibits a relatively high molecular brightness, an inverse response to Ca with ΔF/F = -13, and a near-optimal dissociation constant (K ) for Ca of 105 nM.
View Article and Find Full Text PDFMolecular fluorescent indicators are versatile tools for dynamic imaging of biological systems. We now report a class of indicators that are based on the chemigenetic combination of a synthetic ion-recognition motif and a protein-based fluorophore. Specifically, we have developed a calcium ion (Ca) indicator that is based on genetic insertion of circularly permuted green fluorescent protein into HaloTag protein self-labeled with a ligand containing the Ca chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid.
View Article and Find Full Text PDFwas launched in 2014 coinciding with the launch of the BRAIN Initiative focused on development of technologies for advancement of neuroscience. For the last seven years, ' agenda has been well aligned with this focus on neurotechnologies featuring new optical methods and tools applicable to brain studies. While the BRAIN Initiative 2.
View Article and Find Full Text PDFHyperammonemia is known to cause various neurological dysfunctions such as seizures and cognitive impairment. Several studies have suggested that hyperammonemia may also be linked to the development of Alzheimer's disease (AD). However, the direct evidence for a role of ammonia in the pathophysiology of AD remains to be discovered.
View Article and Find Full Text PDFL-Lactate, traditionally considered a metabolic waste product, is increasingly recognized as an important intercellular energy currency in mammals. To enable investigations of the emerging roles of intercellular shuttling of L-lactate, we now report an intensiometric green fluorescent genetically encoded biosensor for extracellular L-lactate. This biosensor, designated eLACCO1.
View Article and Find Full Text PDFIntensiometric genetically encoded biosensors, based on allosteric modulation of the fluorescence of a single fluorescent protein, are powerful tools for enabling imaging of neural activities and other cellular biochemical events. The archetypical example of such biosensors is the GCaMP series of Ca biosensors, which have been steadily improved over the past two decades and are now indispensable tools for neuroscience. However, no other biosensors have reached levels of performance, or had revolutionary impacts within specific disciplines, comparable to that of the Ca biosensors.
View Article and Find Full Text PDFGenetically encoded fluorescent indicators have transformed the way neuroscientists record neuronal activities and interrogate the nervous system in vivo. In this review, we discuss recent advances and new additions to the toolkit of indicators for calcium ion entry, membrane voltage change, neurotransmitter release, and other neuronal molecular processes. We highlight new engineering approaches for indicator design and development, and identify key areas for future improvement.
View Article and Find Full Text PDFApoptosis plays a pivotal role in development and tissue homeostasis in multicellular organisms. Clustering of Bak proteins on the mitochondrial outer membrane is responsible for the induction of apoptosis by evoking a release of pro-apoptotic proteins from mitochondria into cytosol. However, how the protein cluster permeabilizes the mitochondrial membrane remains unclear because elucidation of the cluster characteristics such as size and protein density has been hampered by the diffraction-limited resolution of light microscopy.
View Article and Find Full Text PDFApoptosis plays a pivotal role in development and tissue homeostasis in multicellular organisms. Dysfunction of apoptosis is involved in many fatal diseases such as cancer. Visualization of apoptosis in living animals is necessary to understand the mechanism of apoptosis-related diseases.
View Article and Find Full Text PDFLuciferase, a bioluminescent protein, has been used as an analytical tool to visualize intracellular phenomena. Luciferase with red light emission is particularly useful for bioluminescence imaging because of its high transmittance in mammalian tissues. However, the luminescence intensity of existing luciferases with their emission over 600 nm is insufficient for imaging studies because of their weak intensities.
View Article and Find Full Text PDFThe development of the efficient screening system of detecting compounds that promote myogenesis and prevent muscle atrophy is important. Mouse C2C12 cells are widely used to evaluate myogenesis but the procedures of the assay are not simple and the quantification is not easy. We established C2C12 cells expressing the N-terminal green fluorescence protein (GFP) and the C-terminal GFP (GFP1-10 and GFP11 cells).
View Article and Find Full Text PDFA lipid second messenger, phosphatidylinositol (3,4,5)-trisphosphate (PIP3), is a signaling molecule that mediates central cellular events, such as growth, motility, and development by activating downstream proteins. Although functions of various PIP3 binding partners have been unveiled, the various roles of PIP3 have not been resolved thoroughly because of limitations of PIP3 analysis. Herein, we describe a novel method for the analysis of relative PIP3 amount based on spontaneous complementation of split luciferase fragments.
View Article and Find Full Text PDFTo realize a DP-QPSK receiver PLC, we heterogeneously integrated eight high-speed PDs on a silica-based PLC platform with a PBS, 90-degree optical hybrids and a VOA. The use of a 2.5%-Δ waveguide reduced the receiver PLC size to 11 mm x 11 mm.
View Article and Find Full Text PDF