Publications by authors named "Yusuke Mizobuchi"

Remifentanil (REM) and fentanyl (FEN) are commonly used analgesics that act by activating a µ-opioid receptor (MOR). Although optimal concentrations of REM can be easily maintained during surgery, it is sometimes switched to FEN for optimal pain regulation. However, standards for this switching protocol remain unclear.

View Article and Find Full Text PDF

Background: Transdermal fentanyl is widely used in the treatment of severe pain because of convenience, safety, and stable blood concentrations. Nevertheless, patients often develop tolerance to fentanyl, necessitating the use of other opioids; transdermal buprenorphine patch is widely used as an analgesic agent, though available formulation does not provide comparable analgesic effect as transdermal fentanyl patch. Opioids bind to the opioid receptor (OR) to activate both G protein-mediated and β-arrestin-mediated pathways.

View Article and Find Full Text PDF

The issue of tolerance to continuous or repeated administration of opioids should be addressed. The ability of ketamine to improve opioid tolerance has been reported in clinical studies, and its mechanism of tolerance may involve improved desensitization of μ-opioid receptors (MORs). We measured changes in MOR activity and intracellular signaling induced by repeated fentanyl and morphine administration and investigated the effects of ketamine on these changes with human embryonic kidney 293 cells expressing MOR using the CellKey™, cADDis cyclic adenosine monophosphate, and PathHunter β-arrestin recruitment assays.

View Article and Find Full Text PDF

Opioid agonists elicit their analgesic action mainly via μ opioid receptors; however, their use is limited because of adverse events including constipation and respiratory depression. It has been shown that analgesic action is transduced by the G protein-mediated pathway whereas adverse events are by the β-arrestin-mediated pathway through μ opioid receptor signaling. The first new-generation opioid TRV130, which preferentially activates G protein- but not β-arrestin-mediated signal, was constructed and developed to reduce adverse events.

View Article and Find Full Text PDF

We experienced anesthetic management of open reduction for a femoral neck fracture in a patient com- plicated with fat embolism syndrome. An 83-year-old woman with a femoral neck fracture was admitted to our hospital after suffering an injury. She developed hypoxemia on admission.

View Article and Find Full Text PDF