Publications by authors named "Yusuke Matsuba"

Inwardly rectifying potassium (Kir) 4.1 channels in astrocytes regulate neuronal excitability by mediating spatial potassium buffering. Although dysfunction of astrocytic Kir4.

View Article and Find Full Text PDF

Effects of myostatin (MSTN)-suppression on the regeneration of injured skeletal muscle under unloading condition were investigated by using transgenic mice expressing a dominant-negative form of MSTN (MSTN-DN). Both MSTN-DN and wild-type (WT) mice were subjected to continuous hindlimb suspension (HS) for 6 weeks. Cardiotoxin (CTX) was injected into left soleus muscle under anesthesia 2 weeks after the initiation of HS.

View Article and Find Full Text PDF

Effects of administration of granulocyte colony-stimulating factor (G-CSF) on the regeneration of injured mammalian skeletal muscles were studied in male C57BL/6J mice. Muscle injury was induced by injection of cardiotoxin (CTX) into tibialis anterior muscles bilaterally. G-CSF was administrated for 8 consecutive days from 3 days before and 5 days after the injection.

View Article and Find Full Text PDF

The effect of functional overloading on the regenerating process of injured skeletal muscle was investigated in 10-week-old male mice (C57BL/6J). Functional overloading on soleus of both hindlimbs was performed by cutting the distal tendons of plantaris and gastrocnemius muscles for 2 weeks before cardiotoxin (CTX) injection as the preconditioning and also during 10 weeks of recovery. To activate the necrosis-regeneration cycle, 0.

View Article and Find Full Text PDF

The purpose of this study was to investigate the effects of functional overload on the regeneration of injured skeletal muscles of male C57BL/6J mice. To activate a necrosis-regeneration cycle, cardiotoxin (CTX) was injected into soleus muscles both control and functionally overloaded groups. The recovery of muscle protein content, which was decreased by CTX injection, was significantly stimulated by application of functional overloading.

View Article and Find Full Text PDF

Effects of an antiulcer drug, geranylgeranylaceton (GGA), and/or heat-stress on 72 kDa heat shock protein (HSP72) expression and protein content in cultured skeletal muscle cells were studied. Mouse skeletal muscle cells (C(2)C(12)) were subjected to either 1) control (cultured at 37 degrees C without GGA), 2) GGA administration (10(-11) - 10(-8) M), 3) heat-stress at 41 degrees C for 60 min, or 4) GGA administration combined with heat-stress. Expression of HSP72 was up-regulated by GGA administration.

View Article and Find Full Text PDF