Publications by authors named "Yusuke Kimata"

A comprehensive and quantitative evaluation of multiple intracellular structures or proteins is a promising approach to provide a deeper understanding of and new insights into cellular polarity. In this study, we developed an image analysis pipeline to obtain intensity profiles of fluorescent probes along the apical-basal axis in elongating Arabidopsis thaliana zygotes based on two-photon live-cell imaging data. This technique showed the intracellular distribution of actin filaments, mitochondria, microtubules, and vacuolar membranes along the apical-basal axis in elongating zygotes from the onset of cell elongation to just before asymmetric cell division.

View Article and Find Full Text PDF

Cell division is essential for development and involves spindle assembly, chromosome separation, and cytokinesis. In plants, the genetic tools for controlling the events in cell division at the desired time are limited and ineffective owing to high redundancy and lethality. Therefore, we screened cell division-affecting compounds in zygotes, whose cell division is traceable without time-lapse observations.

View Article and Find Full Text PDF

In most flowering plants, the asymmetric cell division of zygotes is the initial step that establishes the apical-basal axis. In the Arabidopsis zygote, vacuolar accumulation at the basal cell end is crucial to ensure zygotic division asymmetry. Despite the importance, it was unclear whether this polar vacuolar distribution was achieved by predominant biogenesis at the basal region or by directional movement after biogenesis.

View Article and Find Full Text PDF

The zygote is the first cell of a multicellular organism. In most angiosperms, the zygote divides asymmetrically to produce an embryo-precursor apical cell and a supporting basal cell. Zygotic division should properly segregate symbiotic organelles, because they cannot be synthesized .

View Article and Find Full Text PDF

Recent understandings ofArabidopsiszygote. Body axis formation is essential for the proper development of multicellular organisms. The apical-basal axis in Arabidopsis thaliana is determined by the asymmetric division of the zygote, following its cellular polarization.

View Article and Find Full Text PDF

Plant embryogenesis begins with fertilization and ends with the generation of the basic body plan of the future plant. Despite its importance, the dynamics of flowering plant ontogeny have long been a mystery, because the embryo develops deep in the maternal tissue. Recently, an embryonic live-cell imaging system was established in Arabidopsis thaliana by developing an in vitro ovule cultivation method and utilizing two-photon excitation microscopy (2PEM), which is suitable for deep imaging.

View Article and Find Full Text PDF

In most flowering plants, the asymmetric cell division of the zygote is the initial step in establishing the apical-basal axis of the mature plant. The zygote is polarized, possessing the nucleus at the apical tip and large vacuoles at the basal end. Despite their known polar localization, whether the positioning of the vacuoles and the nucleus is coordinated and what the role of the vacuole is in the asymmetric zygotic division remain elusive.

View Article and Find Full Text PDF

In most flowering plants, the zygote and embryo are hidden deep in the mother tissue, and thus it has long been a mystery of how they develop dynamically; for example, how the zygote polarizes to establish the body axis and how the embryo specifies various cell fates during organ formation. This manuscript describes an in vitro ovule culture method to perform live-cell imaging of developing zygotes and embryos of Arabidopsis thaliana. The optimized cultivation medium allows zygotes or early embryos to grow into fertile plants.

View Article and Find Full Text PDF

The asymmetric cell division of the zygote is the initial and crucial developmental step in most multicellular organisms. In flowering plants, whether zygote polarity is inherited from the preexisting organization in the egg cell or reestablished after fertilization has remained elusive. How dynamically the intracellular organization is generated during zygote polarization is also unknown.

View Article and Find Full Text PDF

Cell proliferation is crucial to the growth of multicellular organisms, and thus the proper control of cell division is important to prevent developmental arrest or overgrowth. Nevertheless, tools for controlling cell proliferation are still poor in plant. To develop novel tools, we focused on a specific compound family, triarylmethanes, whose members show various antiproliferative activities in animals.

View Article and Find Full Text PDF

Microstructures of 3C-SiC grown by chemical vapor deposition (CVD) technique on undulant silicon substrate and a further developed technique called switch-back epitaxy (SBE) were studied using transmission electron microscopy (TEM). In case of the CVD sample, the density of the stacking faults was found to be significantly decreasing along growth direction. Sites of collision of stacking faults were observed using high-resolution transmission electron microscopy.

View Article and Find Full Text PDF