Publications by authors named "Yusuke Himeoka"

Understanding the relationship between the structure of chemical reaction networks and their reaction dynamics is essential for unveiling the design principles of living organisms. However, while some network-structural features are known to relate to the steady-state characteristics of chemical reaction networks, mathematical frameworks describing the links between out-of-steady-state dynamics and network structure are still underdeveloped. Here, we characterize the out-of-steady-state behavior of a class of artificial chemical reaction networks consisting of the ligation and splitting reactions of polymers.

View Article and Find Full Text PDF

The process of cell differentiation in multicellular organisms is characterized by hierarchy and irreversibility in many cases. However, the conditions and selection pressures that give rise to these characteristics remain poorly understood. By using a mathematical model, here we show that the network of differentiation potency (differentiation diagram) becomes necessarily hierarchical and irreversible by increasing the number of terminally differentiated states under certain conditions.

View Article and Find Full Text PDF

The stationary phase is the general term for the state a bacterial culture reaches when no further increase in cell mass occurs due to exhaustion of nutrients in the growth medium. Depending on the type of nutrient that is first depleted, the metabolic state of the stationary phase cells may vary greatly, and the subsistence strategies that best support cell survival may differ. As ribosomes play a central role in bacterial growth and energy expenditure, ribosome preservation is a key element of such strategies.

View Article and Find Full Text PDF

Prolonged lag time can be induced by starvation contributing to the antibiotic tolerance of bacteria. We analyze the optimal lag time to survive and grow the iterative and stochastic application of antibiotics. A simple model shows that the optimal lag time can exhibit a discontinuous transition when the severeness of the antibiotic application, such as the probability to be exposed the antibiotic, the death rate under the exposure, and the duration of the exposure, is increased.

View Article and Find Full Text PDF

Adaptation to unforeseen environmental changes is one of the most prominent features that characterize the living system. Although signal transduction and gene regulation networks evolved to adapt specific environmental conditions that they frequently experience, it is also reported that bacteria can modify their gene expression patterns to survive a huge variety of environmental conditions even without such pre-designed networks to adapt specically to each environment. Here we propose a general mechanism of cells for such "spontaneous" adaptation, on the basis of stochastic gene expression and epigenetic modication.

View Article and Find Full Text PDF

In type-I toxin-antitoxin (TA) systems, the action of growth-inhibiting toxin proteins is counteracted by the antitoxin small RNAs (sRNAs) that prevent the translation of toxin messenger RNAs (mRNAs). When a TA module is encoded on a plasmid, the short lifetime of antitoxin sRNA compared to toxin mRNAs mediates post-segregational killing (PSK) that contribute the plasmid maintenance, while some of the chromosomal encoded TA loci have been reported to contribute to persister formation in response to a specific upstream signal. Some of the well studied type-I TA systems such as hok/sok are known to have a rather complex regulatory mechanism.

View Article and Find Full Text PDF

Cells generally convert nutrient resources to products via energy transduction. Accordingly, the thermodynamic efficiency of this conversion process is one of the most essential characteristics of living organisms. However, although these processes occur under conditions of dynamic metabolism, most studies of cellular thermodynamic efficiency have been restricted to examining steady states; thus, the relevance of dynamics to this efficiency has not yet been elucidated.

View Article and Find Full Text PDF

Cells generally convert external nutrient resources to support metabolism and growth. Understanding the thermodynamic efficiency of this conversion is essential to determine the general characteristics of cellular growth. Using a simple protocell model with catalytic reaction dynamics to synthesize the necessary enzyme and membrane components from nutrients, the entropy production per unit-cell-volume growth is calculated analytically and numerically based on the rate equation for chemical kinetics and linear nonequilibrium thermodynamics.

View Article and Find Full Text PDF