Publications by authors named "Yusuke Echigoya"

RNase H-dependent gapmer antisense oligonucleotides (ASOs) are a promising therapeutic approach via sequence-specific binding to and degrading target RNAs. However, the efficacy and mechanism of antiviral gapmer ASOs have remained unclear. Here, we investigated the inhibitory effects of gapmer ASOs containing locked nucleic acids (LNA gapmers) on proliferating a mosquito-borne flavivirus, Japanese encephalitis virus (JEV), with high mortality.

View Article and Find Full Text PDF

Phosphorodiamidate morpholino oligomer (PMO)-mediated exon skipping is a therapeutic approach that applies to many Duchenne muscular dystrophy (DMD) patients harboring out-of-frame deletion mutations in the DMD gene. In particular, PMOs for skipping exon 44 have been developing in clinical trials, such as the drug NS-089/NCNP-02. Two exon 53 skipping PMOs, golodirsen and viltolarsen, have received conditional approval for treating patients due to their ability to restore dystrophin protein expression.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is primarily caused by out-of-frame deletions in the dystrophin gene. Exon skipping using phosphorodiamidate morpholino oligomers (PMOs) converts out-of-frame to in-frame mutations, producing partially functional dystrophin. Four single-exon skipping PMOs are approved for DMD but treat only 8 to 14% of patients each, and some exhibit poor efficacy.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a lethal X-linked recessive disorder caused by mutations in the gene and the subsequent lack of dystrophin protein. Recently, phosphorodiamidate morpholino oligomer (PMO)-antisense oligonucleotides (ASOs) targeting exon 51 or 53 to reestablish the reading frame have received regulatory approval as commercially available drugs. However, their applicability and efficacy remain limited to particular patients.

View Article and Find Full Text PDF

Parasites of the genus Haemoproteus are vector-borne avian haemosporidia commonly found in bird species of the world. Haemoproteus infections are typically considered relatively benign in birds. However, some Haemoproteus species cause severe disease and mortality, especially for captive birds removed from their original habitat.

View Article and Find Full Text PDF

Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant disorder characterized by a progressive, asymmetric weakening of muscles, starting with those in the upper body. It is caused by aberrant expression of the double homeobox protein 4 gene (DUX4) in skeletal muscle. FSHD is currently incurable.

View Article and Find Full Text PDF

Facioscapulohumeral muscular dystrophy (FSHD), characterized by progressive muscle weakness and deterioration, is genetically linked to aberrant expression of in muscle. DUX4, in its full-length form, is cytotoxic in nongermline tissues. Here, we designed locked nucleic acid (LNA) gapmer antisense oligonucleotides (AOs) to knock down in immortalized FSHD myoblasts and the FSHD mouse model.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers are exploring new treatments in clinical trials, including exon-skipping therapy that aims to fix mutations in the DMD gene using antisense oligonucleotides, though their effectiveness on heart muscle is still uncertain.
  • * In this study, induced-pluripotent stem cells were created from T cells of a DMD patient, leading to successful cardiomyocyte differentiation and treatments that restored dystrophin levels and improved heart cell functionality by reducing arrhythmias and enhancing calcium signaling.
View Article and Find Full Text PDF

Mutations in the dystrophin (DMD) gene and consequent loss of dystrophin cause Duchenne muscular dystrophy (DMD). A promising therapy for DMD, single-exon skipping using antisense phosphorodiamidate morpholino oligomers (PMOs), currently confronts major issues in that an antisense drug induces the production of functionally undefined dystrophin and may not be similarly efficacious among patients with different mutations. Accordingly, the applicability of this approach is limited to out-of-frame mutations.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD), a fatal X-linked recessive disorder, is caused mostly by frame-disrupting, out-of-frame deletions in the () gene. Antisense oligonucleotide-mediated exon skipping is a promising therapy for DMD. Exon skipping aims to convert out-of-frame mRNA to in-frame mRNA and induce the production of internally-deleted dystrophin as seen in the less severe Becker muscular dystrophy.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is caused by mutations in DMD, which codes for dystrophin. Because the progressive and irreversible degeneration of muscle occurs from childhood, earlier therapy is required to prevent dystrophic progression. Exon skipping by antisense oligonucleotides called phosphorodiamidate morpholino oligomers (PMOs), which restores the DMD reading frame and dystrophin expression, is a promising candidate for use in neonatal patients, yet the potential remains unclear.

View Article and Find Full Text PDF

Antisense-mediated exon skipping has made significant progress as a therapeutic platform in recent years, especially in the case of Duchenne muscular dystrophy (DMD). Despite FDA approval of eteplirsen-the first-ever antisense drug clinically marketed for DMD-exon skipping therapy still faces the significant hurdles of limited applicability and unknown truncated protein function. In-frame exon skipping of dystrophin exons 45-55 represents a significant approach to treating DMD, as a large proportion of patients harbor mutations within this "hotspot" region.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD), the most common lethal genetic disorder, is caused by mutations in the dystrophin (DMD) gene. Exon skipping is a therapeutic approach that uses antisense oligonucleotides (AOs) to modulate splicing and restore the reading frame, leading to truncated, yet functional protein expression. In 2016, the US Food and Drug Administration (FDA) conditionally approved the first phosphorodiamidate morpholino oligomer (morpholino)-based AO drug, eteplirsen, developed for DMD exon 51 skipping.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is an autosomal recessive disorder affecting motor neurons, and is currently the most frequent genetic cause of infant mortality. SMA is caused by a loss-of-function mutation in the survival motor neuron 1 (SMN1) gene. SMN2 is an SMN1 paralogue, but cannot compensate for the loss of SMN1 since exon 7 in SMN2 mRNA is excluded (spliced out) due to a single C-to-T nucleotide transition in the exon 7.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a lethal genetic disorder caused by an absence of the dystrophin protein in bodywide muscles, including the heart. Cardiomyopathy is a leading cause of death in DMD. Exon skipping via synthetic phosphorodiamidate morpholino oligomers (PMOs) represents one of the most promising therapeutic options, yet PMOs have shown very little efficacy in cardiac muscle.

View Article and Find Full Text PDF

Exon-skipping therapy is an emerging approach that uses synthetic DNA-like molecules called antisense oligonucleotides (AONs) to splice out frame-disrupting parts of mRNA, restore the reading frame, and produce truncated yet functional proteins. Multiple exon skipping utilizing a cocktail of AONs can theoretically treat 80-90% of patients with Duchenne muscular dystrophy (DMD). The success of multiple exon skipping by the systemic delivery of a cocktail of AONs called phosphorodiamidate morpholino oligomers (PMOs) in a DMD dog model has made a significant impact on the development of therapeutics for DMD, leading to clinical trials of PMO-based drugs.

View Article and Find Full Text PDF

Exon skipping therapy has recently received attention for its ability to convert the phenotype of lethal Duchenne muscular dystrophy (DMD) to a more benign form, Becker muscular dystrophy (BMD), by correcting the open reading frame. This therapy has mainly focused on a hot-spot (exons 45-55) mutation in the DMD gene. Exon skipping of an entire stretch of exons 45-55 is an approach applicable to 46.

View Article and Find Full Text PDF

Duchenne muscular dystrophy, one of the most common lethal genetic disorders, is caused by mutations in the DMD gene and a lack of dystrophin protein. In most DMD patients and animal models, sporadic dystrophin-positive muscle fibres, called revertant fibres (RFs), are observed in otherwise dystrophin-negative backgrounds. RFs are thought to arise from skeletal muscle precursor cells and clonally expand with age due to the frequent regeneration of necrotic fibres.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD.

View Article and Find Full Text PDF

Few cases of dystrophinopathy show an asymptomatic phenotype with mutations in the 5' (exons 3-7) hot spot in the Duchenne muscular dystrophy (DMD) gene. Our patient showed increased serum creatine kinase levels at 12 years of age. A muscle biopsy at 15 years of age led to a diagnosis of Becker muscular dystrophy.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disorder caused by mutations in the dystrophin gene. Affecting approximately 1 in 3,600-9337 boys, DMD patients exhibit progressive muscle degeneration leading to fatality as a result of heart or respiratory failure. Despite the severity and prevalence of the disease, there is no cure available.

View Article and Find Full Text PDF

The use of antisense 'splice-switching' oligonucleotides to induce exon skipping represents a potential therapeutic approach to various human genetic diseases. It has achieved greatest maturity in exon skipping of the dystrophin transcript in Duchenne muscular dystrophy (DMD), for which several clinical trials are completed or ongoing, and a large body of data exists describing tested oligonucleotides and their efficacy. The rational design of an exon skipping oligonucleotide involves the choice of an antisense sequence, usually between 15 and 32 nucleotides, targeting the exon that is to be skipped.

View Article and Find Full Text PDF

Antisense-mediated exon skipping, which can restore the reading frame, is a most promising therapeutic approach for Duchenne muscular dystrophy. Remaining challenges include the limited applicability to patients and unclear function of truncated dystrophin proteins. Multiexon skipping targeting exons 45-55 at the mutation hotspot of the dystrophin gene could overcome both of these challenges.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is one of the most common and lethal genetic disorders, with 20,000 children per year born with DMD globally. DMD is caused by mutations in the dystrophin (DMD) gene. Antisense-mediated exon skipping therapy is a promising therapeutic approach that uses short DNA-like molecules called antisense oligonucleotides (AOs) to skip over/splice out the mutated part of the gene to produce a shortened but functional dystrophin protein.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD), one of the most common and lethal genetic disorders, and the mdx mouse myopathies are caused by a lack of dystrophin protein. These dystrophic muscles contain sporadic clusters of dystrophin-expressing revertant fibers (RFs), as detected by immunohistochemistry. RFs are known to arise from muscle precursor cells with spontaneous exon skipping (alternative splicing) and clonally expand in size with increasing age through the process of muscle degeneration/regeneration.

View Article and Find Full Text PDF