Publications by authors named "Yusuf Essam"

Floods and droughts are environmental phenomena that occur in Peninsular Malaysia due to extreme values of streamflow (SF). Due to this, the study of SF prediction is highly significant for the purpose of municipal and environmental damage mitigation. In the present study, machine learning (ML) models based on the support vector machine (SVM), artificial neural network (ANN), and long short-term memory (LSTM), are tested and developed to predict SF for 11 different rivers throughout Peninsular Malaysia.

View Article and Find Full Text PDF

High loads of suspended sediments in rivers are known to cause detrimental effects to potable water sources, river water quality, irrigation activities, and dam or reservoir operations. For this reason, the study of suspended sediment load (SSL) prediction is important for monitoring and damage mitigation purposes. The present study tests and develops machine learning (ML) models, based on the support vector machine (SVM), artificial neural network (ANN) and long short-term memory (LSTM) algorithms, to predict SSL based on 11 different river data sets comprising of streamflow (SF) and SSL data obtained from the Malaysian Department of Irrigation and Drainage.

View Article and Find Full Text PDF

Rivers carry suspended sediments along with their flow. These sediments deposit at different places depending on the discharge and course of the river. However, the deposition of these sediments impacts environmental health, agricultural activities, and portable water sources.

View Article and Find Full Text PDF