Deep learning shows great promise for medical image analysis but often lacks explainability, hindering its adoption in healthcare. Attribution techniques that explain model reasoning can potentially increase trust in deep learning among clinical stakeholders. In the literature, much of the research on attribution in medical imaging focuses on visual inspection rather than statistical quantitative analysis.
View Article and Find Full Text PDFAccurate early diagnosis of COVID-19 viral pneumonia, primarily in asymptomatic people, is essential to reduce the spread of the disease, the burden on healthcare capacity, and the overall death rate. It is essential to design affordable and accessible solutions to distinguish pneumonia caused by COVID-19 from other types of pneumonia. In this work, we propose a reliable approach based on deep transfer learning that requires few computations and converges faster.
View Article and Find Full Text PDF