Publications by authors named "Yusong Gong"

Human tumor vessels express tumor vascular markers (TVM), proteins that are not expressed in normal blood vessels. Antibodies targeting TVMs could act as potent therapeutics. Unfortunately, preclinical in vivo studies testing anti-human TVM therapies have been difficult to do due to a lack of in vivo models with confirmed expression of human TVMs.

View Article and Find Full Text PDF

Background: The endothelin receptor-A (ETRA) plays an important role in tumor cell migration, metastasis, and proliferation. The endothelin receptor B (ETRB) plays a critical role in angiogenesis and the inhibition of anti-tumor immune cell recruitment. Thus dual blockade of ETRA and ETRB could have significant anti-tumor effects.

View Article and Find Full Text PDF

Accumulating evidence suggests that mesenchymal stem cells (MSCs) are recruited to the tumor microenvironment; however, controversy exists regarding their role in solid tumors. In this study, we identified and confirmed the presence of carcinoma-associated MSCs (CA-MSCs) in the majority of human ovarian tumor samples that we analyzed. These CA-MSCs had a normal morphologic appearance, a normal karyotype, and were nontumorigenic.

View Article and Find Full Text PDF

Recent studies indicate that ovarian cancer may be highly responsive to antivascular therapeutics. We have developed an antivascular tumor therapeutic using the F3 peptide to target cisplatin-loaded nanoparticles (F3-Cis-Np) to tumor vessels. We show that although F3-Cis-Np bind with high specificity to both human ovarian tumor cells and tumor endothelial cells in vitro, they only show cytotoxic activity against the tumor endothelial cells.

View Article and Find Full Text PDF

Chromosomal rearrangements fusing the androgen-regulated gene TMPRSS2 to the oncogenic ETS transcription factor ERG occur in approximately 50% of prostate cancers, but how the fusion products regulate prostate cancer remains unclear. Using chromatin immunoprecipitation coupled with massively parallel sequencing, we found that ERG disrupts androgen receptor (AR) signaling by inhibiting AR expression, binding to and inhibiting AR activity at gene-specific loci, and inducing repressive epigenetic programs via direct activation of the H3K27 methyltransferase EZH2, a Polycomb group protein. These findings provide a working model in which TMPRSS2-ERG plays a critical role in cancer progression by disrupting lineage-specific differentiation of the prostate and potentiating the EZH2-mediated dedifferentiation program.

View Article and Find Full Text PDF

The lateral hypothalamic area (LHA) acts in concert with the ventral tegmental area (VTA) and other components of the mesolimbic dopamine (DA) system to control motivation, including the incentive to feed. The anorexigenic hormone leptin modulates the mesolimbic DA system, although the mechanisms underlying this control have remained incompletely understood. We show that leptin directly regulates a population of leptin receptor (LepRb)-expressing inhibitory neurons in the LHA and that leptin action via these LHA LepRb neurons decreases feeding and body weight.

View Article and Find Full Text PDF

Recurrent gene fusions involving E26 transformation-specific (ETS) transcription factors ERG, ETV1, ETV4, or ETV5 have been identified in 40% to 70% of prostate cancers. Here, we used a comprehensive fluorescence in situ hybridization (FISH) split probe strategy interrogating all 27 ETS family members and their five known 5' fusion partners in a cohort of 110 clinically localized prostate cancer patients. Gene rearrangements were only identified in ETS genes that were previously implicated in prostate cancer gene fusions including ERG, ETV1, and ETV4 (43%, 5%, and 5%, respectively), suggesting that a substantial fraction of prostate cancers (estimated at 30-60%) cannot be attributed to an ETS gene fusion.

View Article and Find Full Text PDF

The action of leptin via the long form of its receptor (LepRb) is central to the control of body energy homeostasis and neuroendocrine function, but the mechanisms by which LepRb regulates intracellular signaling have remained incompletely understood. Here we demonstrate that leptin stimulates the phosphorylation of STAT5 and ribosomal protein S6 in the hypothalamic arcuate nucleus in mice. In cultured cells, we investigate the mechanisms by which leptin regulates each of these pathways.

View Article and Find Full Text PDF

The identification of correctly targeted embryonic stem (ES) cell clones from among the large number of random integrants that result from most selection paradigms remains an important hurdle in the generation of animals bearing homologously targeted transgenes. Given the limitations inherent to Southern blotting and standard PCR, we utilized quantitative real-time polymerase chain reaction (qPCR) to rapidly identify murine ES cell clones containing insertions at the correct genomic locus. Importantly, this approach is useful for screening ES clones from conditional/insertional "knock-in" strategies in which there is no loss of genetic material.

View Article and Find Full Text PDF

The leptin receptor, LRb, and other cytokine receptors are devoid of intrinsic enzymatic activity and rely upon the activity of constitutively associated Jak family tyrosine kinases to mediate intracellular signaling. In order to clarify mechanisms by which Jak2, the cognate LRb-associated Jak kinase, is regulated and mediates downstream signaling, we employed tandem mass spectroscopic analysis to identify phosphorylation sites on Jak2. We identified Ser523 as the first-described site of Jak2 serine phosphorylation and demonstrated that this site is phosphorylated on Jak2 from intact cells and mouse spleen.

View Article and Find Full Text PDF

Mutations in the leucine-rich repeat (LRR) domain of Nod2 have been implicated in the pathogenesis of Crohn's disease, yet the function of Nod2 and regulation of the Nod2 pathway remain unclear. In this study, we determined that mitogen-activated protein kinase kinase transforming growth factor (TGF)-beta-activated kinase 1 (TAK1) interacts with Nod2 and is required for Nod2-mediated NF-kappaB activation. The dominant negative form of TAK1 abolished muramyl dipeptide-induced NF-kappaB activation in Nod2-expressing cells.

View Article and Find Full Text PDF

Dendritic cell (DC)-based antitumor vaccine is a novel cancer immunotherapy that is promising for reducing cancer-related mortality. However, results from early clinical trials were suboptimal. A possible explanation is that many tumors secrete immunosuppressive factors such as TGF-beta, which may hamper host immune response to DC vaccine.

View Article and Find Full Text PDF