Background: Alternative splicing (AS) is a principal mode of genetic regulation and one of the most widely used mechanisms to generate structurally and functionally distinct mRNA and protein variants. Dysregulation of AS may result in aberrant transcription and protein products, leading to the emergence of human diseases. Although considered important for regulating gene expression, genome-wide AS dysregulation, underlying mechanisms, and clinical relevance in knee osteoarthritis (OA) remain unelucidated.
View Article and Find Full Text PDFGrowth of semiconductor heterojunction nanoarrays directly on conductive substrates represents a promising strategy toward high-performance photoelectrodes for photoelectrochemical (PEC) water splitting. By controlling the growth conditions, heterojunction nanoarrays with different morphologies and semiconductor components can be fabricated, resulting in greatly enhanced light-absorption properties, stabilities, and PEC activities. Herein, recent progress in the development of self-supported heterostructured semiconductor nanoarrays as efficient photoanode catalysts for water oxidation is reviewed.
View Article and Find Full Text PDFThis study systematically evaluates the performance of a series of TiO nanoflower (TNF) photocatalysts for aqueous methylene blue photo-oxidation under UV irradiation. TNF nanoflowers were synthesized from Ti(IV) butoxide by a hydrothermal method and then calcined at different temperatures ( = 400-800 °C) for specific periods of time ( = 1-5 h). By varying the calcination conditions, TNF-T-t photocatalysts with diverse physicochemical properties and anatase/rutile ratios were obtained.
View Article and Find Full Text PDF