Novel formaldehyde-selective amperometric biosensors were developed based on NAD(+)- and glutathione-dependent formaldehyde dehydrogenase isolated from a gene-engineered strain of the methylotrophic yeast Hansenula polymorpha. Electron transfer between the immobilized enzyme and a platinized graphite electrode was established using a number of different low-molecular free-diffusing redox mediators or positively charged cathodic electrodeposition paints modified with Os-bis-N,N-(2,2'-bipyridil)-chloride ([Os(bpy)(2)Cl]) complexes. Among five tested Os-containing redox polymers of different chemical structure and properties, complexes of osmium-modified poly(4-vinylpyridine) with molecular mass of about 60 kDa containing diaminopropyl groups were selected.
View Article and Find Full Text PDFThe integration of flexible anchoring groups bearing imidazolyl or pyridyl substituents into the structure of electrodeposition paints (EDP) is the basis for the parallel synthesis of a library containing 107 members of different cathodic and anodic EDPs with a high variation in polymer properties. The obtained EDPs were used as immobilization matrix for biosensor fabrication using glucose oxidase as a model enzyme. Amperometric glucose sensors based on the different EDPs showed a wide variation in their sensor characteristics with respect to the apparent Michaelis-Menten constant (KM(app)) representing the linear measuring range and the maximum current (Imax(app)).
View Article and Find Full Text PDF