Acute kidney injury (AKI) exhibits high morbidity and mortality. Kidney injury molecule-1 (KIM1) is dramatically upregulated in renal tubules upon injury, and acts as a biomarker for various renal diseases. However, the exact role and underlying mechanism of KIM1 in the progression of AKI remain elusive.
View Article and Find Full Text PDFThe toxic aggregates of amyloid beta (Aβ) disrupt the cell membrane, induce oxidative stress and mitochondrial dysfunction, and eventually lead to Alzheimer's disease (AD). Intervening with this cytotoxic aggregation process has been suggested as a potential therapeutic approach for AD and other protein misfolding diseases. Traditional Chinese Medicine (TCM) has been used to treat AD and related cognitive impairment for centuries with obvious efficacy.
View Article and Find Full Text PDFArch Biochem Biophys
March 2021
Numerous neurological and non-neurological disorders are associated with dysfunction of epigenetic modulators, and methyl CpG binding protein 2 (MeCP2) is one of such proteins. Initially identified as a transcriptional repressor, MeCP2 specifically binds to methylated DNA, and mutations of MeCP2 have been shown to cause Rett syndrome (RTT), a severe neurological disorder. Recently, accumulating evidence suggests that ubiquitously expressed MeCP2 also plays a central role in non-neurological disorders including cardiac dysfunction, liver injury, respiratory disorders, urological dysfunction, adipose tissue metabolism disorders, movement abnormality and inflammatory responses in a DNA methylation dependent or independent manner.
View Article and Find Full Text PDFOutbreaks and the rapid transmission of viruses, such as coronaviruses and influenza viruses, are serious threats to human health. A major challenge in combating infectious diseases caused by viruses is the lack of effective methods for prevention and treatment. Nanotechnology has provided a basis for the development of novel antiviral strategies.
View Article and Find Full Text PDFProtein misfolding diseases (PMDs) are chronic and progressive, with no effective therapy so far. Aggregation and misfolding of amyloidogenic proteins are closely associated with the onset and progression of PMDs, such as amyloid-β (Aβ) in Alzheimer's disease, α-Synuclein (α-Syn) in Parkinson's disease and human islet amyloid polypeptide (hIAPP) in type 2 diabetes. Inhibiting toxic aggregation of amyloidogenic proteins is regarded as a promising therapeutic approach in PMDs.
View Article and Find Full Text PDF