Publications by authors named "Yusheng Shi"

Background: Pterosin B (PB) exhibits strong neuroprotective effects in vitro, but its therapeutic effect and underlying mechanism on Alzheimer's disease (AD) remain elusive.

Purpose: This study aimed to investigate the anti-AD effect and mechanism of PB.

Study Design: The therapeutic effect and mechanism of PB were investigated in APP/PS1 mice and lipopolysaccharide (LPS)-induced BV-2 cells.

View Article and Find Full Text PDF

Mycotoxins are ubiquitous natural pollutants that pose a serious threat to public health. Deoxynivalenol (DON) as one of the most prominent mycotoxins has a noticeable adverse effect on intestinal barrier function, which depends on the intestinal barrier integrity. However, the potential mechanisms and effective therapeutic strategies remain unclear.

View Article and Find Full Text PDF

Although poly-ether-ether-ketone (PEEK) implants hold significant medical promise, their bioinert nature presents challenges in osseointegration and bone ingrowth within clinical contexts. To mitigate these challenges, the present study introduces Diamond PEEK/bioactive glass (BG) composite scaffolds, characterized by macro/micro dual-porous structures, precisely fabricated via laser powder bed fusion (LPBF) technology. The findings indicate that an increase in BG content within these scaffolds significantly augments their hydrophilicity and hydroxyapatite formation capacities.

View Article and Find Full Text PDF
Article Synopsis
  • Classic photocatalysis struggles with short-lived charge separation and proximity issues, which limits its effectiveness.
  • By modifying a viologen with different electron-accepting and donating components, researchers created a new coordination polymer, Cd-TzBDP, that enhances the efficiency of photocatalytic processes.
  • This new material allows for rapid and long-range electron transfer, enabling continuous catalytic reactions relevant to pharmaceuticals and mimicking biological systems to improve electron transport in different oxygen environments.
View Article and Find Full Text PDF

Background: Brassaiopsis glomerulata (Blum) Regel (B.glomerulata) is recognized as a traditional Chinese medicine (TCM) primarily used for promoting blood circulation and removing stasis. It is frequently utilized in the treatment of injuries resulting from falls and bumps.

View Article and Find Full Text PDF

Based on the electron-deficient property of picric acid (PA), two neutral Ir(III) complexes and modified with the electron-rich carbazolyl groups were synthesized and characterized. Both and exhibit aggregation-induced phosphorescence emission (AIPE) properties in THF/HO. Among them, is extremely sensitive for detecting PA with a limit of detection of 0.

View Article and Find Full Text PDF

Di-2-ethylhexyl phthalate (DEHP) is frequently used as a plasticizer to enhance the plasticity and durability of agricultural products, which pose adverse effects to human health and the environment. Aquaporin 1 (AQP1) is a main water transport channel protein and is involved in the maintenance of intestinal integrity. However, the impact of DEHP exposure on gut health and its potential mechanisms remain elusive.

View Article and Find Full Text PDF

Background: Paraquat (PQ) -induced pulmonary fibrosis poses a significant medical challenge due to limited treatment options and high mortality rates. Consequently, there is an urgent need for early diagnosis and accurate staging to facilitate appropriate treatment strategies. In this study, we assessed the diagnostic potential of [F]F-FAPI-42 PET/CT imaging for early detection and disease staging in a rat model of PQ-induced lung fibrosis.

View Article and Find Full Text PDF

Proton-coupled electron transfer (PCET) imparts an energetic advantage over single electron transfer in activating inert substances. Natural PCET enzyme catalysis generally requires tripartite preorganization of proton relay, substrate-bound active center, and redox mediator, making the processes efficient and precluding side reactions. Inspired by this, a heterogeneous photocatalytic PCET system was established to achieve higher PCET driving forces by modifying proton relays into anthraquinone-based anionic coordination polymers.

View Article and Find Full Text PDF

The accumulation of senescent cells in kidneys is considered to contribute to age-related diseases and organismal aging. Mitochondria are considered a regulator of cell senescence process. Atrazine as a triazine herbicide poses a threat to renal health by disrupting mitochondrial homeostasis.

View Article and Find Full Text PDF

Metallodrug-based photodynamic therapy (PDT) agents have demonstrated significant superiority against cancers, while their different chirality-induced biological activities remain largely unexplored. In this work, we successfully developed a pair of enantiopure mononuclear Ir(III)-based TLD-1433 analogues, and , and their enantiomer-dependent anticancer behaviors were investigated. Photophysical measurements revealed that they display high photostability and chemical stability, strong absorption at 400 nm with high molar extinction coefficients (ε = 5.

View Article and Find Full Text PDF

The radical difunctionalization of alkenes plays a vital role in pharmacy, but the conventional homogeneous catalytic systems are challenging in selectivity and sustainability to afford the target molecules. Herein, the famous readily available metal-organic framework (MOF), Cu(), has been applied to cyano-trifluoromethylation of alkenes as a high-performance and recyclable heterogeneous catalyst, which possesses copper(II) active sites residing in funnel-like cavities. Under mild conditions, styrene derivatives and various unactivated olefins could be smoothly transformed into the corresponding cyano-trifluoromethylation products.

View Article and Find Full Text PDF

Purpose: Fibroblast activation protein inhibitor (FAPI) -based probes have been widely studied in the diagnosis of various malignant tumors with positron emission tomography/computed tomography (PET/CT). However, current imaging studies of FAPI-based probes face challenges in rapid clearance rate and potential false-negative results. Furthermore, FAPI has been rarely explored in optical imaging.

View Article and Find Full Text PDF

Continuous industrialization and other human activities have led to severe water quality deterioration by harmful pollutants. Achieving robust and high-throughput water purification is challenging due to the coupling between mechanical strength, mass transportation and catalytic efficiency. Here, a structure-function integrated system is developed by Douglas fir wood-inspired metamaterial catalysts featuring overlapping microlattices with bimodal pores to decouple the mechanical, transport and catalytic performances.

View Article and Find Full Text PDF

High dynamic range 3D measurement technology, utilizing multiple exposures, is pivotal in industrial metrology. However, selecting the optimal exposure sequence to balance measurement efficiency and quality remains challenging. This study reinterprets this challenge as a Markov decision problem and presents an innovative exposure selection method rooted in deep reinforcement learning.

View Article and Find Full Text PDF
Article Synopsis
  • 4D printing is a cutting-edge technology that allows printed objects to change shape or function over time in response to external factors, making them dynamic instead of static.
  • This technology has significant applications across various fields such as biomedical engineering, electronics, robotics, and photonics, showcasing its versatility and potential for innovation.
  • The review covers recent advancements in materials and techniques for 4D printing, discusses machine learning applications, and outlines current challenges and future development trends in the field.
View Article and Find Full Text PDF

Di-(2-ethylhexyl) phthalate (DEHP), as the most common phthalate, has been extensively used as a plasticizer to improve the plasticity of agricultural products, which pose severe harm to human health. Mitochondrial dynamics and endoplasmic reticulum (ER) homeostasis are indispensable for maintaining mitochondria-associated ER membrane (MAM) integrity. In this study, we aimed to explore the effect of DEHP on the nervous system and its association with the ER-mitochondria interaction.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most common primary liver cancer with a high mortality rate. It is regarded as a significant public health issue because of its complicated pathophysiology, high metastasis, and recurrence rates. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis.

View Article and Find Full Text PDF

Although additive manufacturing enables controllable structural design and customized performance for magnetoelectric sensors, their design and fabrication still require careful matching of the size and modulus between the magnetic and conductive components. Achieving magnetoelectric integration remains challenging, and the rigid coils limit the flexibility of the sensors. To overcome these obstacles, this study proposes a composite process combining selective laser sintering (SLS) and 3D transfer printing for fabricating flexible liquid metal-coated magnetoelectric sensors.

View Article and Find Full Text PDF

The robustness of superhydrophobic objects conflicts with both the inevitable introduction of fragile micro/nanoscale surfaces and three-dimensional (3D) complex structures. The popular metal 3D printing technology can manufacture robust metal 3D complex components, but the hydrophily and mass surface defects restrict its diverse application. Herein, we proposed a strategy that takes the inherent ridges and grooves' surface defects from laser powder bed fusion additive manufacturing (LPBF-AM), a metal 3D printing process, as storage spaces for hydrophobic silica (HS) nanoparticles to obtain superhydrophobic capacity and superior robustness.

View Article and Find Full Text PDF

An enduring challenge in the field of electric power generation employing magnetic nanofluids pertains to the inherent issue of solid-liquid adhesion, which results in random residue deposition of magnetic nanofluids on solid substrates during motion. Superslippery surfaces, characterized by their exceptional repellent properties and ultralow adhesion characteristics toward an extensive spectrum of fluids, offer an effective approach to ameliorate the aforementioned adhesive problem. Herein, it is demonstrated that electric power can be generated through the sliding of magnetic nanofluid droplets on superslippery surfaces.

View Article and Find Full Text PDF

Multicomponent supramolecular block copolymers (BCPs) have attracted much attention due to their potential functionalities, but examples of three-component supramolecular BCPs are rare. Herein, we report the synthesis of three-component multiblock 1D supramolecular copolymers of Ir(III) complexes 1-3 by a sequential seeded supramolecular polymerization approach. Precise control over the kinetically trapped species via the pathway complexity of the monomers is the key to the successful synthesis of BCPs with up to 9 blocks.

View Article and Find Full Text PDF