Oxidative stress damage caused by free radicals around the moist microenvironment of wound has been a clinical challenge in skin tissue healing. Here, a novel chitosan-based bioinspired asymmetric wound repair composite (BAWRC) film was designed by facilitated endogenous tissue engineering strategy through layer-by-layer self-assembly technology for accelerated wound healing. The asymmetric characteristics were skillfully reflected by two different functional layers: hydrophilic chitosan (CS)/silk fibroin (SF) repair layer, and a hydrophobic bacteriostatic tea tree oil (TTO) layer with a rough surface.
View Article and Find Full Text PDFOsteoarthritis disease can easily lead to articular cartilage degeneration and subchondral bone damage, so the demand for suitable articular substitutes is gradually increasing. In order to simulate the complex environment of different layers in natural joint, we fabricate the continuous one-phase gradient scaffold. In the study, CS (chitosan) was modified with SH (sodium hyaluronate) and GO (graphene oxide) to form the whole scaffold.
View Article and Find Full Text PDF