Publications by authors named "Yusheng Bian"

Psychological stress contributes to cardiovascular disease (CVD) and sudden cardiac death, yet its molecular basis remains obscure. RNA binding protein RBM24 plays a critical role in cardiac development, rhythm regulation, and cellular stress. Here, we show that psychological stress activates RBM24 S181 phosphorylation through eIF4E2-GSK3β signaling, which causally links psychological stress to CVD by promoting APOE translation (apolipoprotein E).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have designed and successfully created a slotted photonic crystal with features as small as 40 nm using a standard silicon photonics process.
  • The unique design increases the electric field energy by four times compared to traditional slotted photonic crystals by using a specialized unit cell shape that enhances optical energy localization.
  • This work paves the way for future development of advanced photonic structures that could improve applications like biosensing and light manipulation on-chip.
View Article and Find Full Text PDF

Cadmium (Cd) is an important environmental pollutant that causes liver damage and induces nonalcoholic fatty liver disease (NAFLD). NAFLD is a fat accumulation disease and has significant effects on the body. Melatonin (Mel) is an endogenous protective molecule with antioxidant, anti-inflammatory, antiobesity, and antiaging effects.

View Article and Find Full Text PDF

Cadmium is a heavy environmental pollutant that presents a high risk to male-fertility and targets the different cellular and steroidogenic supporting germ cells networks during spermatogenesis. However, the mechanism accounting for its toxicity in multivesicular bodies (MVBs) biogenesis, and exosomal secretion associated with spermatozoa remains obscure. In the current study, the light and electron microscopy revealed that, the Sertoli cells perform a dynamic role with secretion of well-developed early endosomes (Ee) and MVBs pathway associated with spermatozoa during spermatogenesis.

View Article and Find Full Text PDF

The epididymis is responsible for post-testicular sperm maturation as it provides a favorable environment for spermatozoa to gain the ability for movement and fertilization. The recent evidence has shown that, the spermatozoa are vulnerable to dynamic variations driven by various cellular exposure mechanisms mediated by epididymosomes. Exosomes provide new insight into a mechanism of intercellular communication because they provide direct evidence for the transfer of several important bio-active cargo elements (proteins, lipid, DNA, mRNA, microRNA, circular RNA, long noncoding RNA) between epididymis and spermatozoa.

View Article and Find Full Text PDF

We experimentally demonstrate wavelength-independent couplers (WICs) based on an asymmetric Mach-Zehnder interferometer (MZI) on a monolithic silicon-photonics platform in a commercial, 300-mm, CMOS foundry. We compare the performance of splitters based on MZIs consisting of circular and 3 order (cubic) Bézier bends. A semi-analytical model is constructed in order to accurately calculate each device's response based on their specific geometry.

View Article and Find Full Text PDF

Grating-assisted contra-directional couplers (CDCs) wavelength selective filters for wavelength division multiplexing (WDM) are designed and experimentally demonstrated. Two configuration setups are designed; a straight-distributed Bragg reflector (SDBR) and curved distributed Bragg reflector (CDBR). The devices are fabricated on a monolithic silicon photonics platform in a GlobalFoundries CMOS foundry.

View Article and Find Full Text PDF

Microplastics have become a new type of environmental pollutant that can accumulate in various tissues and organs of the body and cause chronic damage. In this study, two different size polystyrene microplastics (PS-MPs, 5 μm and 0.5 μm) exposure models were established in mice to investigate the effects of PS-MPs with different particle sizes on oxidative stress in the liver.

View Article and Find Full Text PDF

We experimentally demonstrate wavelength-independent couplers based on an asymmetric Mach-Zehnder interferometer on a monolithic silicon-photonics platform in a state-of-the-art CMOS foundry. The devices are also designed to exhibit fabrication tolerant performance for arbitrary splitting ratios. We have developed a semi-analytical model to optimize the device response and the reliability of the model is benchmarked against 3D-FDTD simulations.

View Article and Find Full Text PDF

A cost-efficient and low-complexity optical input/output (I/O) packaging solution is a substantial challenge for volume production of photonic integrated circuits. To address this, metamaterial fiber couplers are an attractive solution for integrated photonic devices especially for optical I/O, interfacing standard optical fibers to photonic chips. They offer the advantages of refractive index engineering to achieve better mode match as well as higher fabrication tolerances.

View Article and Find Full Text PDF

A beam shaping approach has been implemented to realize high-performance waveguide crossings based on cosine tapers. Devices with a compact footprint of 4.7µ×4.

View Article and Find Full Text PDF

Vanadate materials such as CaVO3 and SrVO3 were recently proposed as promising alternatives to their conventional transparent conducting oxide counterparts owing to the superior capability for simultaneous realization of high optical transparency and high electrical conductivity originating from strong electron-electron interactions. Here we show that, in addition to their remarkable optoelectronic properties as conducting materials, their incorporation into planar waveguiding configurations could enable outstanding optical performance that is otherwise difficult to achieve with conventional material building blocks, especially metals. Starting from the guided wave at a single CaVO3/dielectric interface, the unique dispersion relationship and propagation property of the fundamental mode are revealed and compared to the conventional surface plasmon polariton associated with a silver/dielectric planar configuration.

View Article and Find Full Text PDF

The precise manipulation of acoustic fields in microfluidics is of critical importance for the realization of many biomedical applications. Despite the tremendous efforts devoted to the field of acoustofluidics during recent years, dexterous control, with an arbitrary and complex acoustic wavefront, in a prescribed, microscale region is still out of reach. Here, we introduce the concept of acoustofluidic waveguide, a three-dimensional compact configuration that is capable of locally guiding acoustic waves into a fluidic environment.

View Article and Find Full Text PDF

Reduction of the crosstalk between adjacent photonic components has been regarded as one of the most effective, yet most challenging approaches for increasing the packing density of photonic integrated circuits. Recently, extensive efforts have been devoted to this field, leading to a number of elaborate designs, such as waveguide supperlattice and nanophotonic cloaking, among others. Here we develop a simple and efficient crosstalk reduction approach for silicon-based nanophotonic circuits by introducing a periodic array of silicon strips between adjacent waveguides.

View Article and Find Full Text PDF

A highly efficient numerical approach for simulating the wideband optical response of nano-architectures comprised of Drude-Critical Points (DCP) media (e.g., gold and silver) is proposed and validated through comparing with commercial computational software.

View Article and Find Full Text PDF

The emerging development of the hybrid plasmonic waveguide has recently received significant attention owing to its remarkable capability of enabling subwavelength field confinement and great transmission distance. Here we report a guiding approach that integrates hybrid plasmon polariton with dielectric-loaded plasmonic waveguiding. By introducing a deep-subwavelength dielectric ridge between a dielectric slab and a metallic substrate, a hybrid dielectric-loaded nanoridge plasmonic waveguide is formed.

View Article and Find Full Text PDF

Micro- to nanosized droplets of liquid metals, such as eutectic gallium indium (EGaIn) and Galinstan, have been used for developing a variety of applications in flexible electronics, sensors, catalysts, and drug delivery systems. Currently used methods for producing micro- to nanosized droplets of such liquid metals possess one or several drawbacks, including the lack in ability to control the size of the produced droplets, mass produce droplets, produce smaller droplet sizes, and miniaturize the system. Here, a novel method is introduced using acoustic wave-induced forces for on-chip production of EGaIn liquid-metal microdroplets with controllable size.

View Article and Find Full Text PDF

The simultaneous realization of nanoscale field localization and low transmission loss remains one of the major challenges in nanophotonics. Metal nanowire waveguides can fulfill this goal to a certain extent by confining light within subwavelength space, yet their optical performances are still restricted by the tradeoff between confinement and loss, which results in quite limited propagation distances when their mode sizes are reduced down to the nanometer scale. Here we introduce a class of low-loss guiding schemes by integrating silicon-on-insulator (SOI) waveguides with plasmon nanowire structures.

View Article and Find Full Text PDF

We report the realization of low-loss optical waveguiding at telecommunication wavelength by exploiting the hybridization of photonic modes guided by coupled all-dielectric nanowires and plasmon waves at planar metal-dielectric interfaces. The characteristics of the hybrid plasmon polaritons, which are yielded by the coupling between two types of guided modes, can be readily tuned through engineering key structural parameters of the coupled nanowires and their distances to the metallic surfaces. In addition to exhibiting significantly lower attenuations for similar degrees of confinement as compared to the conventional hybrid waves in single-dielectric-nanowire-based waveguides, these hybridized plasmonic modes are also capable of enabling reduced waveguide crosstalk for comparable propagation distances.

View Article and Find Full Text PDF

We report the observation of strongly confined plasmon modes in hybridized metal-dielectric slot waveguides, which consist of semiconductor-insulator-semiconductor nanostructures embedded inside the low-index gaps of conventional hybrid plasmonic configurations. Owing to the combined effects induced by the high-refractive-index-contrast dielectric slot and semiconductor-insulator-metal configurations, tight field localization (Aeff ~ λ(2)/1250-λ(2)/55) in conjunction with large propagation distances (L ~ 70-180 μm) can be realized simultaneously at telecommunication wavelength. Through comprehensive numerical simulations, the characteristics of the fundamental hybrid modes are revealed in detail by optimizing key structural parameters of the waveguides.

View Article and Find Full Text PDF

A hybrid plasmonic structure comprising a silicon slot waveguide separated from an inverse metal ridge by a thin low-index insulator gap is proposed and investigated. Owing to its symmetric hybrid configuration containing closely spaced silicon rails near the metal ridge, the fundamental symmetric hybrid slot mode supported by the structure is demonstrated to be capable of simultaneously achieving low propagation loss and subwavelength field confinement within a wide range of physical dimensions at the telecom wavelength. Comprehensive numerical investigations regarding the effects of key geometric parameters on the guided modes' properties, including the slot sizes, the shape and dimension of the silicon rails, the width of the gap region as well as the height of metallic nanoridge, have been conducted.

View Article and Find Full Text PDF

The optical characteristics of a metal-coated dielectric wedge structure are investigated at a wavelength of 1550 nm. The effects of the metal/gap layers' thicknesses, as well as the dimension of the dielectric wedge on the guided modes' properties, are systematically analyzed. It is revealed that the characteristics of the fundamental quasi-TE and quasi-TM plasmonic modes supported by the configuration demonstrate similar trends against the variation of the metal layer thickness while exhibiting quite different behaviors with the change of the wedge size.

View Article and Find Full Text PDF

For accelerating the response and enhancing the sensitivity simultaneously, a novel fluidic sensor based on a side-opened and suspended dual-core fiber and dual-beam interference detection mechanism is first explored and analyzed here. The side opening ensures a fast response by allowing fluidic analyte to approach the fiber core laterally. The dual-beam Mach-Zehnder interferemetry provides a relative higher sensitivity.

View Article and Find Full Text PDF

Goos-Hanchen effect is experimentally studied when the Bloch surface wave is excited in the forbidden band of a one-dimensional photonic band-gap structure. By tuning the refractive index of the cladding covering the truncated photonic crystal structure, either a guided or a surface mode can be excited. In the latter case, strong enhancement of the Goos-Hanchen shift induced by the Bloch-surface-wave results in sub-millimeter shifts of the reflected beam position.

View Article and Find Full Text PDF

A novel voltage interrogation method using electro-optically tunable waveguide-coupled surface plasmon resonance sensors is demonstrated. Before measurements, we use a bicell photodetector to detect the reflectance from the sensor and take the differential signal from the photodetector as the resonance condition. For different analytes, by scanning the DC voltage on the waveguide layer of the sensor chip, the resonance condition can be maintained the same.

View Article and Find Full Text PDF