Zinc toxicity affects crop productivity and threatens food security and human health worldwide. Unfortunately, the accumulation patterns of zinc and the harmful effects of excessive zinc on sweet potato have not been well explored. In the present research, two genotypes of sweet potato varieties with different accumulation patterns of zinc were selected to analyze the effects of excessive zinc on sweet potato via hydroponic and field cultivation experiments.
View Article and Find Full Text PDFSweet potato, a dicotyledonous and perennial plant, is the third tuber/root crop species behind potato and cassava in terms of production. Long terminal repeat (LTR) retrotransposons are highly abundant in sweet potato, contributing to genetic diversity. Retrotransposon-based insertion polymorphism (RBIP) is a high-throughput marker system to study the genetic diversity of plant species.
View Article and Find Full Text PDFBackground: Zn deficiency is one of the leading public health problems in the world. Staple food crop, such as rice, cannot provide enough Zn to meet the daily dietary requirement because Zn in grain would chelate with phytic acid, which resulted in low Zn bioavailability. Breeding new rice varieties with high Zn bioavailability will be an effective, economic and sustainable strategy to alleviate human Zn deficiency.
View Article and Find Full Text PDF