Publications by authors named "Yuseung Jo"

Polymerase chain reaction (PCR) in small fluidic systems not only improves speed and sensitivity of deoxyribonucleic acid (DNA) amplification but also achieves high-throughput quantitative analyses. However, air bubble trapping and growth during PCR has been considered as a critical problem since it causes the failure of DNA amplification. Here we report bubble-free diatom PCR by exploiting a hierarchically porous silica structure of single-celled algae.

View Article and Find Full Text PDF

Electron transfer through the mitochondrial electron transport chain (ETC) can be critically blocked by the dysfunction of protein complexes. Redox-active molecules have been used to mediate the electron transfer in place of the dysfunctional complexes; however, they are limited to replacing complex I and are known to be toxic. Here we report artificial mitochondrial electron transfer pathways that enhance ETC activity by exploiting inner-membrane-bound gold nanoparticles (GNPs) as efficient electron transfer mediators.

View Article and Find Full Text PDF

Plasmonic nanocavities between metal nanoparticles on metal films are either hydrophobic or fully occupied by nonmetallic spacers, preventing molecular diffusion into electromagnetic hotspots. Here we realize water-wettable open plasmonic cavities by devising gold nanoparticle with site-selectively grown ultrathin dielectric layer-on-gold film structures. We directly confirm that hydrophilic dielectric layers of SiO or TiO, which are formed only at the tips of gold nanorod via precise temperature control, render sub-10 nm cavities open to the surroundings and completely water-wettable.

View Article and Find Full Text PDF

Dynamics of release and cellular uptake of aqueous CO from CO-releasing molecules (CORMs) significantly affect signaling and cell viability. So far, it has been mainly observed by IR, UV-visible, and fluorescence techniques, which suffer from poor sensitivity and slow response time. Here, we show how to directly probe the mass transfer of aqueous CO from CORMs to cells using a fluidic chamber integrated with live cells and Raman reporters of large-area Au@Pd core-shell nanoparticle assembly to emulate a physiologically relevant microenvironment.

View Article and Find Full Text PDF