Multiple sclerosis (MS) is an autoimmune, inflammatory demyelinating disorder of the central nervous system. Accumulating evidence has underscored the therapeutic potential of bone marrow mesenchymal stem cells (BMSCs)-derived exosomes (BMSC-Exos) containing bioactive compounds in MS. Herein, the current study sought to characterize the mechanism of BMSC-Exos harboring miR-367-3p both in BV2 microglia by Erastin-induced ferroptosis and in experimental autoimmune encephalomyelitis (EAE), a typical animal model of MS.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system and is marked by inflammation and damage to the myelin sheath surrounding nerve fibers. Recent studies have highlighted the therapeutic value of exosomes (Exos) obtained from bone marrow mesenchymal stem cells (BMSCs) in MS treatment. These BMSC-Exos contain biologically active molecules that show promising results in preclinical evaluations.
View Article and Find Full Text PDFNeuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelination disorder, and dysregulation of RNAs contributes to its pathogenesis. We aimed to reveal the expression profiles of RNAs, including messenger RNA (mRNA), circular RNA (circRNA) and long non-coding RNA (lncRNA), in the peripheral blood mononuclear cells (PBMCs) of patients with NMOSD. Seven NMOSD patients and seven healthy controls (HCs) were enrolled in the competitive endogenous RNA (ceRNA) microarray analysis.
View Article and Find Full Text PDF