bioprinting is one of the most clinically relevant techniques in the emerging bioprinting technology because it could be performed directly on the human body in the operating room and it does not require bioreactors for post-printing tissue maturation. However, commercial bioprinters are still not available on the market. In this study, we demonstrated the benefit of the originally developed first commercial articulated collaborative bioprinter for the treatment of full-thickness wounds in rat and porcine models.
View Article and Find Full Text PDFMagnetic force and gravity are two fundamental forces affecting all living organisms, including bacteria. On Earth, experimentally created magnetic force can be used to counterbalance gravity and place living organisms in conditions of magnetic levitation. Under conditions of microgravity, magnetic force becomes the only force that moves bacteria, providing an acceleration towards areas of the lowest magnetic field and locking cells in this area.
View Article and Find Full Text PDFJ Biomed Mater Res A
April 2023
One of the approaches to restoring the structure of damaged cartilage tissue is an intra-articular injection of tissue-engineered medical products (TEMPs) consisting of biocompatible matrices loaded with cells. The most interesting are the absorbable matrices from decellularized tissues, provided that the cellular material is completely removed from them with the maximum possible preservation of the structure and composition of the natural extracellular matrix. The present study investigated the mechanical, biochemical, and biological properties of decellularized porcine cartilage microparticles (DCMps) obtained by techniques, differing only in physical treatments, such as freeze-thaw cycling (Protocol 1), supercritical carbon dioxide fluid (Protocol 2) and ultrasound (Protocol 3).
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
December 2022
Efficient screening of photosensitizers (PS) as well as studying their photodynamic activity, especially PS excited in the near-infrared region, require informative in vitro models to adequately reflect the architecture, thickness, and intercellular interactions in tumors. In our study, we used spheroids formed from human colon cancer HCT-116 cells and liver cancer Huh7 cells to assess the phototoxicity of a new PS based on tetracationic derivative of synthetic bacteriochlorin (BC4). We optimized conditions for the irradiation regime based on the kinetics of BC4 accumulation in spheroids and kinetics of spheroid growth.
View Article and Find Full Text PDFIn situ 3D bioprinting is a new emerging therapeutic modality for treating human skin diseases. The tissue spheroids have been previously suggested as a powerful tool in rapidly expanding bioprinting technology. It has been demonstrated that the regenerative potential of human dermal fibroblasts could be quantitatively evaluated in 2D cell culture and confirmed after implantation in vivo.
View Article and Find Full Text PDFChanges in bacterial physiology caused by the combined action of the magnetic force and microgravity were studied in grown using a specially developed device aboard the International Space Station. The morphology and metabolism of grown under spaceflight (SF) or combined spaceflight and magnetic force (SF + MF) conditions were compared with ground cultivated bacteria grown under standard (control) or magnetic force (MF) conditions. SF, SF + MF, and MF conditions provided the up-regulation of Ag43 auto-transporter and cell auto-aggregation.
View Article and Find Full Text PDFMagnetic tissue engineering is one of the rapidly emerging and promising directions of tissue engineering and biofabrication where the magnetic field is employed as temporal removal support or scaffold. Iron oxide nanoparticles are used to label living cells and provide the desired magnetic properties. Recently, polymer microcapsules loaded with iron oxide nanoparticles have been proposed as a novel approach to designing magnetic materials with high local concentrations.
View Article and Find Full Text PDFScaffolding is the conceptual framework of conventional tissue engineering. Over the past decade, scaffold-free approaches as a potential alternative to classic scaffold-based methods have emerged, and scaffold-free magnetic levitational tissue engineering (magnetic force-based tissue engineering [Mag-TE]) is a type of this novel tissue engineering strategy. However, Mag-TE is often based on the use of potentially toxic magnetic nanoparticles.
View Article and Find Full Text PDFThree-dimensional (3D) bioprinting as a technology is being researched and applied since 2003. It is actually several technologies (inkjet, extrusion, laser, magnetic bioprinting, etc.) under an umbrella term "3D bioprinting.
View Article and Find Full Text PDFCytoskeleton systems, actin microfilaments, microtubules (MTs) and intermediate filaments (IFs) provide the biomechanical stability and spatial organization in cells. To understand the specific contributions of each cytoskeleton systems to intrinsic properties of spheroids, we've scrutinized the effects of the cytoskeleton perturbants, cytochalasin D (Cyto D), nocodazole (Noc) and withaferin A (WFA) on fusion, spreading on adhesive surface, morphology and biomechanics of chondrospheres (CSs). We confirmed that treatment with Cyto D but not with Noc or WFA severely affected CSs fusion and spreading dynamics and significantly reduced biomechanical properties of cell aggregates.
View Article and Find Full Text PDFIn traditional tissue engineering, synthetic or natural scaffolds are usually used as removable temporal support, which involves some biotechnology limitations. The concept of "scaffield" approach utilizing the physical fields instead of biomaterial scaffold has been proposed recently. In particular, a combination of intense magnetic and acoustic fields can enable rapid levitational bioassembly of complex-shaped 3D tissue constructs from tissue spheroids at low concentration of paramagnetic agent (gadolinium salt) in the medium.
View Article and Find Full Text PDFMagnetic levitational bioassembly of three-dimensional (3D) tissue constructs represents a rapidly emerging scaffold- and label-free approach and alternative conceptual advance in tissue engineering. The magnetic bioassembler has been designed, developed, and certified for life space research. To the best of our knowledge, 3D tissue constructs have been biofabricated for the first time in space under microgravity from tissue spheroids consisting of human chondrocytes.
View Article and Find Full Text PDFChronic infections are associated with the formation of nonattached biofilm-like aggregates. models of surface-attached biofilms do not always accurately mimic these processes. Here, we tested a new approach to create nonattached bacterial aggregates using the principle of magnetic levitation of biological objects placed into a magnetic field gradient.
View Article and Find Full Text PDFThe calcium phosphate particles can be used as building blocks for fabrication of 3D scaffolds intended for bone tissue engineering. This work presents for the first time a rapid creation of 3D scaffolds using magnetic levitation of calcium phosphate particles. Namely, tricalcium phosphate particles of equal size and certain porosity are used, which undergo the process of recrystallization after magnetic levitational assembly of the scaffold to ensure stitching of the scaffold.
View Article and Find Full Text PDFThe feasibility of magnetic levitational bioassembly of tissue-engineered constructs from living tissue spheroids in the presence of paramagnetic ions (i.e. Gd) was recently demonstrated.
View Article and Find Full Text PDFReproducible, scalable, and cost effective fabrication and versatile characterization of tissue spheroids (TS) is highly demanded by 3D bioprinting and drug discovery. Consistent geometry, defined mechanical properties, optimal viability, appropriate extracellular matrix/cell organization are required for cell aggregates aimed for application in these fields. A straightforward procedure for fabrication and systematic multiparametric characterization of TS with defined properties and uniform predictable geometry employing non-adhesive technology is suggested.
View Article and Find Full Text PDFCollagen is one of the most promising materials for 3D bioprinting because of its distinguished biocompatibility. Cell-laden constructs made of pure collagen with or without incorporated growth supplements support engineered constructs persistence in culture and are perfectly suitable for grafting. The limiting factor for direct 3D collagen printing was poor printability of collagen solutions, especially admixed with cells or tissue spheroids.
View Article and Find Full Text PDFObjective: Chondrospheres represent a variant of tissue spheroids biofabricated from chondrocytes. They are already being used in clinical trials for cartilage repair; however, their biomechanical properties have not been systematically investigated yet. The aim of our study was to characterize chondrospheres in long-term culture conditions for morphometric changes, biomechanical integrity, and their fusion and spreading kinetics.
View Article and Find Full Text PDFTissue spheroids have been proposed as building blocks in 3D biofabrication. Conventional magnetic force-driven 2D patterning of tissue spheroids requires prior cell labeling by magnetic nanoparticles, meanwhile a label-free approach for 3D magnetic levitational assembly has been introduced. Here we present first time report on rapid assembly of 3D tissue construct using scaffold-free, nozzle-free and label-free magnetic levitation of tissue spheroids.
View Article and Find Full Text PDFBioprinting can be defined as additive biofabrication of three-dimensional (3D) tissues and organ constructs using tissue spheroids, capable of self-assembly, as building blocks. The thyroid gland, a relatively simple endocrine organ, is suitable for testing the proposed bioprinting technology. Here we report the bioprinting of a functional vascularized mouse thyroid gland construct from embryonic tissue spheroids as a proof of concept.
View Article and Find Full Text PDF