Landfilling municipal solid waste incineration (MSWI) residue alkalizes the waste layer, causing a subsequent decrease in microbial activity and a delay in the decomposition of organic matter. In this study, efficiencies of neutralization of the leachate and organic matter decomposition in the waste layer in a column filled with MSWI residue using aeration and compost addition were evaluated. Total organic carbon (TOC) reduction in the waste layer is large at high oxygen flow rate (OFR).
View Article and Find Full Text PDFIt is known that aeration reduces rapidly the concentration of organic matter in leachate. However, the oxygen flow rate required to attain a certain reaction rate of organic matter should be carefully estimated. In this study, using the oxygen ratio (the ratio of oxygen flow rate by aeration to oxygen consumption rate of waste layer) as a parameter, the reaction rate of organic matter in leachate from landfilled incineration ash and incombustible waste upon aeration was evaluated.
View Article and Find Full Text PDFA method to obtain processed residue from mixed construction and demolition waste (mixed C&D-W) - free from environmental pollutants - for deposition in landfill is discussed. In particular, additional sieving, the presence of gypsum board in mixed C&D-W at the first stage of manual presorting, and the color of processed residue were studied for the basic characterization of the different fractions. Considerable precautions should be taken to prevent leaching of hazardous substances, such as T-Hg, Pb, Cr(6+), As, and fluoride and its compounds, when processed residue, particularly in crushed fraction at an intermediate treatment facility, is used as construction material.
View Article and Find Full Text PDFProcessed sandy residue generated from mixed construction and demolition waste (mixed C&D-W) was investigated for possible deposition in landfill. The basic properties and the components removed in the loss on ignition (LOI) test were examined. The target material for decreasing LOI was elucidated and the validity of LOI used as landfill standard for inert industrial solid waste was discussed.
View Article and Find Full Text PDFTo determine the allowable ratio of waste sludge required to ensure an aerobic zone in the landfill, we investigated sludge permeability, which involved mixing sludge, the major landfill waste in Japan, at different mixing ratios with other wastes (slag and construction and demolition waste (C&D)). We measured parameters of sample permeability and analyzed parameters that exert a large influence on oxygen penetration depth with a simulation model accounting for both diffusion and convection driven by temperature gradients. We also determined the critical volumetric contents in which gas and/or water permeability change significantly when sludge is mixed with sand or gravel.
View Article and Find Full Text PDFThis pilot-scale study evaluated the use of intermediate cover soil barriers for removing heavy metals in leachate generated from test cells for co-disposed fly ash from municipal solid waste incinerators, ash melting plants, and shredder residue. Cover soil barriers were mixtures of Andisol (volcanic ash soil), waste iron powder, (grinder dust waste from iron foundries), and slag fragments. The cover soil barriers were installed in the test cells' bottom layer.
View Article and Find Full Text PDFAs a groundwater contaminant, 1,4-dioxane is of considerable concern because of its toxicity, refractory nature to degradation, and rapid migration within an aquifer. Although landfill leachate has been reported to contain significant levels of 1,4-dioxane, the origin of 1,4-dioxane in leachate has not been clarified until now. In this study, the origins of 1,4-dioxane in landfill leachate were investigated at 38 landfill sites and three incineration plants in Japan.
View Article and Find Full Text PDFIn this study, heavy metal leaching from aerobic and anaerobic landfill bioreactor test cells for co-disposed municipal solid waste incineration (MSWI) bottom ash and shredded low-organic residues has been investigated. Test cells were operated for 1 year. Heavy metals which were comparatively higher in leachate of aerobic cell were copper (Cu), lead (Pb), boron (B), zinc (Zn), manganese (Mn) and iron (Fe), and those apparently lower were aluminum (Al), arsenic (As), molybdenum (Mo), and vanadium (V).
View Article and Find Full Text PDF