GalNAc oligonucleotide conjugates demonstrate improved potency in vivo due to selective and efficient delivery to hepatocytes in the liver via receptor-mediated endocytosis. GalNAc-siRNA and GalNAc-antisense oligonucleotides are at various stages of clinical trials, while the first two drugs were already approved by FDA. Also, GalNAc conjugates are excellent tools for functional genomics and target validation in vivo.
View Article and Find Full Text PDFBright fluorescent probes with enhanced intensities in the fluorescein channel are of great value for plenty of biological applications. To design effective probes one should introduce as many as possible fluorophores to the biomolecule while leaving its native structure as intact as possible. To reach this compromise, we designed and synthesized fluorescein bifluorophores on the 3,5-diaminobenzoic acid scaffold, which allows for insertion of two fluorophores at one modification site of a biomolecule.
View Article and Find Full Text PDFGalNAc conjugation is emerging as a dominant strategy for delivery of therapeutic oligonucleotides to hepatocytes. The structure and valency of the GalNAc ligand contributes to the potency of the conjugates. Here we present a panel of multivalent GalNAc variants using two different synthetic strategies.
View Article and Find Full Text PDFWe developed a novel technique for the efficient conjugation of oligonucleotides with various alkyl azides such as fluorescent dyes, biotin, cholesterol, N-acetylgalactosamine (GalNAc), etc. using copper-catalysed alkyne-azide cycloaddition on the solid phase and CuI·P(OEt) as a catalyst. Conjugation is carried out in an oligonucleotide synthesizer in fully automated mode and is coupled to oligonucleotide synthesis and on-column deprotection.
View Article and Find Full Text PDF