Publications by authors named "Yury Tikunov"

Capsicum (pepper) is among the most economically important species worldwide, and its fruits accumulate specialized metabolites with essential roles in plant environmental interaction and human health benefits as well as in conferring their unique taste. However, the genetics underlying differences in metabolite presence/absence and/or accumulation remain largely unknown. In this study, we carried out a genome-wide association study as well as generating and characterizing a novel backcross inbred line mapping population to determine the genetic architecture of the pepper metabolome.

View Article and Find Full Text PDF

Plants with innate disease and pest resistance can contribute to more sustainable agriculture. Natural defence compounds produced by plants have the potential to provide a general protective effect against pathogens and pests, but they are not a primary target in resistance breeding. Here, we identified a wild relative of potato, , that provides us with unique insight in the role of glycoalkaloids in plant immunity.

View Article and Find Full Text PDF

Phenolic acids and flavonoids are large groups of secondary metabolites ubiquitous in the plant kingdom. They are currently in the spotlight due to the numerous health benefits associated with their consumption, as well as for their vital roles in plant biological processes and in plant-environment interaction. Tomato, eggplant and pepper are in the top ten most consumed vegetables in the world, and their fruit accumulation profiles have been extensively characterized, showing substantial differences.

View Article and Find Full Text PDF

The regulation of flavonoid biosynthesis is only partially explored in pepper (Capsicum annuum L.). The genetic basis underlying flavonoid variation in pepper fruit was studied.

View Article and Find Full Text PDF

Anthocyanins are important pigments that impart color in plants. In Solanum, different species display various fruit or flower colors due to varying degrees of anthocyanin accumulation. Here we identified two anthocyanin-free mutants from an ethylmethane sulfonate-induced mutant library and naturally occurring mutants in Solanum melongena, with mutations in the 5' splicing site of the second intron of dihydroflavonol-4-reductase (DFR) - leading to altered splicing.

View Article and Find Full Text PDF

The relations between physical and chemical characteristics (e.g., color, firmness, volatile and non-volatile metabolites) of red ripe strawberry fruit and the natural spoilage caused by Botrytis cinerea were investigated.

View Article and Find Full Text PDF

Exposure to high temperatures leads to failure in pollen development, which may have significant implications for food security with ongoing climate change. We hypothesized that the stress response-associated hormone salicylic acid (SA) affects pollen tolerance to long-term mild heat (LTMH) (≥14 days exposure to day-/nighttime temperature of 30-34/24-28°C, depending on the genotype), either positively, by inducing acclimation, or negatively, by reducing investment in reproductive development. Here, we investigated these hypotheses assessing the pollen thermotolerance of a tomato line, which has low SA levels.

View Article and Find Full Text PDF

Tomato ( L.) aroma is determined by the interaction of volatile compounds (VOCs) released by the tomato fruits with receptors in the nose, leading to a sensorial impression, such as "sweet", "smoky", or "fruity" aroma. Of the more than 400 VOCs released by tomato fruits, 21 have been reported as main contributors to the perceived tomato aroma.

View Article and Find Full Text PDF

Plants respond to high temperatures with global changes of the transcriptome, proteome, and metabolome. Heat stress transcription factors (Hsfs) are the core regulators of transcriptome responses as they control the reprogramming of expression of hundreds of genes. The thermotolerance-related function of Hsfs is mainly based on the regulation of many heat shock proteins (HSPs).

View Article and Find Full Text PDF

A tomato core collection consisting of 122 gene bank accessions, including landraces, old cultivars, and wild relatives, was explored for variation in several plant growth, yield and fruit quality traits. The resequenced accessions were also genotyped with respect to a number of mutations or variations in key genes known to underlie these traits. The yield-related traits fruit number and fruit weight were much higher in cultivated varieties when compared to wild accessions, while, in wild tomato accessions, Brix was higher than in cultivated varieties.

View Article and Find Full Text PDF

Wild tomato species represent a rich gene pool for numerous desirable traits lost during domestication. Here, we exploited an introgression population representing wild desert-adapted species and a domesticated cultivar to establish the genetic basis of gene expression and chemical variation accompanying the transfer of wild-species-associated fruit traits. Transcriptome and metabolome analysis of 580 lines coupled to pathogen sensitivity assays resulted in the identification of genomic loci associated with levels of hundreds of transcripts and metabolites.

View Article and Find Full Text PDF

Tomato (Solanum lycopersicum L.) has become a popular model for genetic studies of fruit flavor in the last two decades. In this article we present a study of tomato fruit flavor, including an analysis of the genetic, metabolic and sensorial variation of a collection of contemporary commercial glasshouse tomato cultivars, followed by a validation of the associations found by quantitative trait locus (QTL) analysis of representative biparental segregating populations.

View Article and Find Full Text PDF

Tomato fruit ripening is regulated by transcription factors (TFs), their downstream effector genes, and the ethylene biosynthesis and signalling pathway. Spontaneous non-ripening mutants ripening inhibitor (rin), non-ripening (nor) and Colorless non-ripening (Cnr) correspond with mutations in or near the TF-encoding genes MADS-RIN, NAC-NOR and SPL-CNR, respectively. Here, we produced heterozygous single and double mutants of rin, nor and Cnr and evaluated their functions and genetic interactions in the same genetic background.

View Article and Find Full Text PDF

It is generally believed that domestication and breeding of plants has led to genetic erosion, including loss of nutritional value and resistances to diseases, especially in tomato. We studied the diversity dynamics of greenhouse tomato varieties in NW Europe, especially The Netherlands, over the last seven decades. According to the used SNP array, the genetic diversity was indeed very low during the 1960s, but is now eight times higher when compared to that dip.

View Article and Find Full Text PDF

Introduction: Untargeted metabolomics is a powerful tool to detect hundreds of metabolites within a given tissue and to compare the metabolite composition of samples in a comprehensive manner. However, with regard to pollen research such comprehensive metabolomics approaches are yet not well developed. To enable isolation of pollen that is tightly enclosed within the anthers of the flower, such as immature pollen, the current pollen isolation protocols require the use of a watery solution.

View Article and Find Full Text PDF

Anthocyanins are a group of polyphenolic pigments that are ubiquitously found in the plant kingdom. In plants, anthocyanins play a role not only in reproduction, by attracting pollinators and seed dispersers, but also in protection against various abiotic and biotic stresses. There is accumulating evidence that anthocyanins have health-promoting properties, which makes anthocyanin metabolism an interesting target for breeders and researchers.

View Article and Find Full Text PDF

Pollen development metabolomics. Developing pollen is among the plant structures most sensitive to high temperatures, and a decrease in pollen viability is often associated with an alteration of metabolite content. Most of the metabolic studies of pollen have focused on a specific group of compounds, which limits the identification of physiologically important metabolites.

View Article and Find Full Text PDF

Semi-polar metabolites such as flavonoids, phenolic acids, and alkaloids are very important health-related compounds in tomato. As a first step to identify genes responsible for the synthesis of semi-polar metabolites, quantitative trait loci (QTLs) that influence the semi-polar metabolite content in red-ripe tomato fruit were identified, by characterizing fruits of a population of introgression lines (ILs) derived from a cross between the cultivated tomato and the wild species . By analyzing fruits of plants grown at two different locations, we were able to identify robust metabolite QTLs for changes in phenylpropanoid glycoconjugation on chromosome 9, for accumulation of flavonol glycosides on chromosome 5, and for alkaloids on chromosome 7.

View Article and Find Full Text PDF

Modeling genotype-phenotype relationships is a central objective in plant genetics and breeding. Commonly, variations in phenotypic traits are modeled directly in relation to variations at the DNA level, regardless of intermediate levels of biological variation. Here we present an integrative method for the simultaneous modeling of a set of multilevel phenotypic responses to variations at the DNA level.

View Article and Find Full Text PDF

The transformation of the ovary into a fruit after successful completion of pollination and fertilization has been associated with many changes at transcriptomic level. These changes are part of a dynamic and complex regulatory network that is controlled by phytohormones, with a major role for auxin. One of the auxin-related genes differentially expressed upon fruit set and early fruit development in tomato is Solanum lycopersicum AUXIN RESPONSE FACTOR 9 (SlARF9).

View Article and Find Full Text PDF

The present review aims to synthesize our present knowledge about the mechanisms implied in the biosynthesis of volatile compounds in the ripe tomato fruit, which have a key role in tomato flavour. The difficulties in identifiying not only genes or genomic regions but also individual target compounds for plant breeding are addressed. Ample variability in the levels of almost any volatile compound exists, not only in the populations derived from interspecific crosses but also in heirloom varieties and even in commercial hybrids.

View Article and Find Full Text PDF

Phenylpropanoid volatiles are responsible for the key tomato fruit (Solanum lycopersicum) aroma attribute termed "smoky." Release of these volatiles from their glycosylated precursors, rather than their biosynthesis, is the major determinant of smoky aroma in cultivated tomato. using a combinatorial omics approach, we identified the non-smoky glycosyltransferase1 (NSGT1) gene.

View Article and Find Full Text PDF

An overview of the metabolic diversity in ripe fruits of a collection of 32 diverse pepper (Capsicum sp.) accessions was obtained by measuring the composition of both semi-polar and volatile metabolites in fruit pericarp, using untargeted LC-MS and headspace GC-MS platforms, respectively. Accessions represented C.

View Article and Find Full Text PDF

Tomato (Solanum lycopersicum) contains two close homologs of the Arabidopsis thaliana MADS domain transcription factor FRUITFULL (FUL), FUL1 (previously called TDR4) and FUL2 (previously MBP7). Both proteins interact with the ripening regulator RIPENING INHIBITOR (RIN) and are expressed during fruit ripening. To elucidate their function in tomato, we characterized single and double FUL1 and FUL2 knockdown lines.

View Article and Find Full Text PDF