Publications by authors named "Yury Morozov"

The centrosome is the main microtubule organizing center in stem cells, and its mother centriole, anchored to the cell membrane, serves as the basal body of the primary cilium. Prolonged anchorage of centrosomes and primary cilia to the apical segment of the membrane of apical neural progenitor cells is considered vital for interkinetic nuclear translocation and repetitive cycling in the ventricular zone. In contrast, the basolateral anchorage of primary cilia has been regarded as the first step in delamination and conversion of apical to basal neural progenitor cells or neurons.

View Article and Find Full Text PDF

Importance: The risk of mental disorders is consistently associated with variants in CACNA1C (L-type calcium channel Cav1.2) but it is not known why these channels are critical to cognition, and whether they affect the layer III pyramidal cells in the dorsolateral prefrontal cortex that are especially vulnerable in cognitive disorders.

Objective: To examine the molecular mechanisms expressed in layer III pyramidal cells in primate dorsolateral prefrontal cortices.

View Article and Find Full Text PDF

Introduction: Tau phosphorylated at threonine-217 (pT217-tau) is a novel fluid-based biomarker that predicts onset of Alzheimer's disease (AD) symptoms, but little is known about how pT217-tau arises in the brain, as soluble pT217-tau is dephosphorylated post mortem in humans.

Methods: We used multilabel immunofluorescence and immunoelectron microscopy to examine the subcellular localization of early-stage pT217-tau in entorhinal and prefrontal cortices of aged macaques with naturally occurring tau pathology and assayed pT217-tau levels in plasma.

Results: pT217-tau was aggregated on microtubules within dendrites exhibiting early signs of degeneration, including autophagic vacuoles.

View Article and Find Full Text PDF

Introduction: pT217-tau is a novel fluid-based biomarker that predicts onset of Alzheimer's disease (AD) symptoms, but little is known about how pT217-tau arises in brain, as soluble pT217-tau is dephosphorylated postmortem in humans.

Methods: We utilized multi-label immunofluorescence and immunoelectron-microscopy to examine the subcellular localization of early-stage pT217-tau in entorhinal and prefrontal cortices of aged macaques with naturally-occurring tau pathology and assayed pT217-tau levels in plasma.

Results: pT217-tau was aggregated on microtubules within dendrites exhibiting early signs of degeneration, including autophagic vacuoles.

View Article and Find Full Text PDF

Alzheimer's disease cortical tau pathology initiates in the layer II cell clusters of entorhinal cortex, but it is not known why these specific neurons are so vulnerable. Aging macaques exhibit the same qualitative pattern of tau pathology as humans, including initial pathology in layer II entorhinal cortex clusters, and thus can inform etiological factors driving selective vulnerability. Macaque data have already shown that susceptible neurons in dorsolateral prefrontal cortex express a "signature of flexibility" near glutamate synapses on spines, where cAMP-PKA magnification of calcium signaling opens nearby potassium and hyperpolarization-activated cyclic nucleotide-gated channels to dynamically alter synapse strength.

View Article and Find Full Text PDF

Mitochondrial malfunction and morphologic disorganization have been observed in brain cells as part of complex pathological changes. However, it is unclear what may be the role of mitochondria in the initiation of pathologic processes or if mitochondrial disorders are consequences of earlier events. We analyzed the morphologic reorganization of organelles in an embryonic mouse brain during acute anoxia using an immunohistochemical identification of the disordered mitochondria, followed by electron microscopic three-dimensional (3D) reconstruction.

View Article and Find Full Text PDF

Glutamate carboxypeptidase-II (GCPII) expression in brain is increased by inflammation, e.g. by COVID19 infection, where it reduces NAAG stimulation of metabotropic glutamate receptor type 3 (mGluR3).

View Article and Find Full Text PDF

The hippocampal-entorhinal system supports cognitive functions, has lifelong neurogenic capabilities in many species, and is selectively vulnerable to Alzheimer's disease. To investigate neurogenic potential and cellular diversity, we profiled single-nucleus transcriptomes in five hippocampal-entorhinal subregions in humans, macaques, and pigs. Integrated cross-species analysis revealed robust transcriptomic and histologic signatures of neurogenesis in the adult mouse, pig, and macaque but not humans.

View Article and Find Full Text PDF

The similarities and differences between nervous systems of various species result from developmental constraints and specific adaptations. Comparative analyses of the prefrontal cortex (PFC), a cerebral cortex region involved in higher-order cognition and complex social behaviours, have identified true and potential human-specific structural and molecular specializations, such as an exaggerated PFC-enriched anterior-posterior dendritic spine density gradient. These changes are probably mediated by divergence in spatiotemporal gene regulation, which is particularly prominent in the midfetal human cortex.

View Article and Find Full Text PDF

Galanin, one of the most inducible neuropeptides, is widely present in developing brains, and its expression is altered by pathologic events (e.g., epilepsy, ischemia, and axotomy).

View Article and Find Full Text PDF

The creatine transporter (CrT) maintains brain creatine (Cr) levels, but the effects of its deficiency on energetics adaptation under stress remain unclear. There are also no effective treatments for CrT deficiency, the second most common cause of X-linked intellectual disabilities. Herein, we examined the consequences of CrT deficiency in brain energetics and stress-adaptation responses plus the effects of intranasal Cr supplementation.

View Article and Find Full Text PDF

Introduction: The etiology of sporadic Alzheimer's disease (AD) requires non-genetically modified animal models.

Methods: The relationship of tau phosphorylation to calcium-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) dysregulation was analyzed in aging rhesus macaque dorsolateral prefrontal cortex (dlPFC) and rat primary cortical neurons using biochemistry and immuno-electron microscopy. The influence of calcium leak from ryanodine receptors (RyRs) on neuronal firing and cognitive performance was examined in aged macaques.

View Article and Find Full Text PDF

Radial glial cells (RGC) are at the center of brain development in vertebrates, acting as progenitors for neurons and macroglia (oligodendrocytes and astrocytes) and as guides for migration of neurons from the ventricular surface to their final positions in the brain. These cells originate from neuroepithelial cells (NEC) from which they inherit their epithelial features and polarized morphology, with processes extending from the ventricular to the pial surface of the embryonic cerebrum. We have learnt a great deal since the first descriptions of these cells at the end of the nineteenth century.

View Article and Find Full Text PDF

cAMP signaling has powerful, negative effects on cognitive functions of the primate dorsolateral prefrontal cortex (dlPFC), opening potassium channels to reduce firing and impair working memory, and increasing tau phosphorylation in aging neurons. This contrasts with cAMP actions in classic circuits, where it enhances plasticity and transmitter release. PDE4 isozymes regulate cAMP actions, and thus have been a focus of research and drug discovery.

View Article and Find Full Text PDF

Cannabinoid type 1 receptor (CBR) is expressed and participates in several aspects of cerebral cortex embryonic development as demonstrated with whole-transcriptome mRNA sequencing and other contemporary methods. However, the cellular location of CBR, which helps to specify molecular mechanisms, remains to be documented. Using three-dimensional (3D) electron microscopic reconstruction, we examined CBR immunolabeling in proliferating neural stem cells (NSCs) and migrating neurons in the embryonic mouse () and rhesus macaque () cerebral cortex.

View Article and Find Full Text PDF

Working memory relies on the dorsolateral prefrontal cortex (dlPFC), where microcircuits of pyramidal neurons enable persistent firing in the absence of sensory input, maintaining information through recurrent excitation. This activity relies on acetylcholine, although the molecular mechanisms for this dependence are not thoroughly understood. This study investigated the role of muscarinic M1 receptors (M1Rs) in the dlPFC using iontophoresis coupled with single-unit recordings from aging monkeys with naturally occurring cholinergic depletion.

View Article and Find Full Text PDF

Background: Cognitive impairment in schizophrenia, aging, and Alzheimer's disease is associated with spine and synapse loss from the dorsolateral prefrontal cortex (dlPFC) layer III. Complement cascade signaling is critical in driving spine loss and disease pathogenesis. Complement signaling is initiated by C1q, which tags synapses for elimination.

View Article and Find Full Text PDF

The prefrontal cortex (PFC) mediates higher cognition but is impaired by stress exposure when high levels of catecholamines activate calcium-cAMP-protein kinase A (PKA) signaling. The current study examined whether stress and increased cAMP-PKA signaling in rat medial PFC (mPFC) reduce pyramidal cell firing and impair working memory by activating KCNQ potassium channels. KCNQ2 channels were found in mPFC layers II/III and V pyramidal cells, and patch-clamp recordings demonstrated KCNQ currents that were increased by forskolin or by chronic stress exposure, and which were associated with reduced neuronal firing.

View Article and Find Full Text PDF

The brains of humans and other mammals are highly vulnerable to interruptions in blood flow and decreases in oxygen levels. Here we describe the restoration and maintenance of microcirculation and molecular and cellular functions of the intact pig brain under ex vivo normothermic conditions up to four hours post-mortem. We have developed an extracorporeal pulsatile-perfusion system and a haemoglobin-based, acellular, non-coagulative, echogenic, and cytoprotective perfusate that promotes recovery from anoxia, reduces reperfusion injury, prevents oedema, and metabolically supports the energy requirements of the brain.

View Article and Find Full Text PDF

The primate cerebrum is characterized by a large expansion of cortical surface area, the formation of convolutions, and extraordinarily voluminous subcortical white matter. It was recently proposed that this expansion is primarily driven by increased production of superficial neurons in the dramatically enlarged outer subventricular zone (oSVZ). Here, we examined the development of the parietal cerebrum in macaque monkey and found that, indeed, the oSVZ initially adds neurons to the superficial layers II and III, increasing their thickness.

View Article and Find Full Text PDF

Noradrenergic (NE) α1-adrenoceptors (α1-ARs) contribute to arousal mechanisms and play an important role in therapeutic medications such as those for the treatment of posttraumatic stress disorder (PTSD). However, little is known about how α1-AR stimulation influences neuronal firing in the dorsolateral prefrontal cortex (dlPFC), a newly evolved region that is dysfunctional in PTSD and other mental illnesses. The current study examined the effects of α1-AR manipulation on neuronal firing in dlPFC of rhesus monkeys performing a visuospatial working memory task, focusing on the "delay cells" that maintain spatially tuned information across the delay period.

View Article and Find Full Text PDF

The TCF4 gene is the subject of numerous and varied investigations of it's role in the genesis of neuropsychiatric disease. The gene has been identified as the cause of Pitt-Hopkins syndrome (PTHS) and it has been implicated in various other neuropsychiatric diseases, including schizophrenia, depression, and autism. However, the precise molecular mechanisms of the gene's involvement in neurogenesis, particularly, corticogenesis, are not well understood.

View Article and Find Full Text PDF

The primary stem cells of the cerebral cortex are the radial glial cells (RGCs), and disturbances in their operation lead to myriad brain disorders in all mammals from mice to humans. Here, we found in mice that maternal gestational obesity and hyperglycemia can impair the maturation of RGC fibers and delay cortical neurogenesis. To investigate potential mechanisms, we used optogenetic live-imaging approaches in embryonic cortical slices.

View Article and Find Full Text PDF

Repetitive prenatal exposure to identical or similar doses of harmful agents results in highly variable and unpredictable negative effects on fetal brain development ranging in severity from high to little or none. However, the molecular and cellular basis of this variability is not well understood. This study reports that exposure of mouse and human embryonic brain tissues to equal doses of harmful chemicals, such as ethanol, activates the primary stress response transcription factor heat shock factor 1 (Hsf1) in a highly variable and stochastic manner.

View Article and Find Full Text PDF

Objectives: Phytocannabinoids, such as THC and endocannabinoids, are well known to promote feeding behavior and to control energy metabolism through cannabinoid type 1 receptors (CBR). However, the underlying mechanisms are not fully understood. Generally, cannabinoid-conducted retrograde dis-inhibition of hunger-promoting neurons has been suggested to promote food intake, but so far it has not been demonstrated due to technical limitations.

View Article and Find Full Text PDF