This paper presents the initial results of the synthesis of β-GaO luminescent ceramics via plasma gas-thermal spraying synthesis, where low-temperature plasma of an argon and nitrogen mixture was employed. A direct current electric arc generator of high-enthalpy plasma jet with a self-aligning arc length and an expanding channel of an output electrode served as a plasma source. The feedstock material consisted of a polydisperse powder of monocrystalline β-GaO with particle sizes ranging from 5 to 50 μm.
View Article and Find Full Text PDFEur Phys J E Soft Matter
March 2018
In present paper we recall the canonical Taylor-Green vortex problem solved by in-house implementation of the novel CABARET numerical scheme in weakly compressible formulation. The simulations were carried out on the sequence of refined grids with [Formula: see text], [Formula: see text], [Formula: see text] cells at various Reynolds numbers corresponding to both laminar ([Formula: see text]) and turbulent ([Formula: see text]) vortex decay scenarios. The features of the numerical method are discussed in terms of the kinetic energy dissipation rate and integral enstrophy curves, temporal evolution of the spanwise vorticity, energy spectra and spatial correlation functions.
View Article and Find Full Text PDF