Nanomaterials (Basel)
July 2024
The last decade has seen dramatic progress in research on FETs with 2D channels. Starting from the single devices fabricated using exfoliated flakes in the early 2010s, by the early 2020s, 2D FETs being trialed for mass production and vertical stacking of 2D channels made by leading semiconductor companies. However, the industry is focused solely on transition metal dichalcogenide (TMD) channels coupled with conventional 3D oxide insulators such as AlO and HfO.
View Article and Find Full Text PDFElectronic devices based on two-dimensional semiconductors suffer from limited electrical stability because charge carriers originating from the semiconductors interact with defects in the surrounding insulators. In field-effect transistors, the resulting trapped charges can lead to large hysteresis and device drifts, particularly when common amorphous gate oxides (such as silicon or hafnium dioxide) are used, hindering stable circuit operation. Here, we show that device stability in graphene-based field-effect transistors with amorphous gate oxides can be improved by Fermi-level tuning.
View Article and Find Full Text PDFWithin the last decade, considerable efforts have been devoted to fabricating transistors utilizing 2D semiconductors. Also, small circuits consisting of a few transistors have been demonstrated, including inverters, ring oscillators, and static random access memory cells. However, for industrial applications, both time-zero and time-dependent variability in the performance of the transistors appear critical.
View Article and Find Full Text PDFMechanically exfoliated 2D hexagonal boron nitride (h-BN) is currently the preferred dielectric material to interact with graphene and 2D transition metal dichalcogenides in nanoelectronic devices, as they form a clean van der Waals interface. However, h-BN has a low dielectric constant (≈3.9), which in ultrascaled devices results in high leakage current and premature dielectric breakdown.
View Article and Find Full Text PDFNanoelectronic devices based on 2D materials are far from delivering their full theoretical performance potential due to the lack of scalable insulators. Amorphous oxides that work well in silicon technology have ill-defined interfaces with 2D materials and numerous defects, while 2D hexagonal boron nitride does not meet required dielectric specifications. The list of suitable alternative insulators is currently very limited.
View Article and Find Full Text PDFMoS has received a lot of attention lately as a semiconducting channel material for electronic devices, in part due to its large band gap as compared to that of other 2D materials. Yet, the performance and reliability of these devices are still severely limited by defects which act as traps for charge carriers, causing severely reduced mobilities, hysteresis, and long-term drift. Despite their importance, these defects are only poorly understood.
View Article and Find Full Text PDFBlack phosphorus has been recently suggested as a very promising material for use in 2D field-effect transistors. However, due to its poor stability under ambient conditions, this material has not yet received as much attention as for instance MoS. We show that the recently demonstrated AlO encapsulation leads to highly stable devices.
View Article and Find Full Text PDF