The essential micronutrient elements zinc (Zn) and manganese (Mn) are crucial for plant growth and development. As an important oil crop, the yield and quality of rapeseed are affected by Zn and Mn toxicity. The cation diffusion facilitator (CDF) family of proteins play significant roles in maintaining intracellular ionic homeostasis and tolerance in plants.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2021
Manganese (Mn) is demonstrated to be essential for plants. Ion homeostasis is maintained in plant cells by specialized transporters. PbMTP8.
View Article and Find Full Text PDFThe drive for a simultaneous analysis of multiple targets with excellent accuracy and efficiency, which is often required in both basic biomedical research and clinical applications, demands the development of multiplexed bioassays with desired throughput. With the development of nanotechnologies, innovative multiplex optical bioassays have been achieved. Nanomaterials exhibit unique physical and chemical properties such as easily tunable size, large surface-to-volume ratio, excellent catalysis and the desired signal transduction mechanism, which makes them excellent candidates for the fabrication of novel optical nanoprobes.
View Article and Find Full Text PDFCancer biomarker quantification in human serum is of great importance for accurate patient diagnosis and informed clinical management. To date, ultrasensitive multiplexed detection of proteins without amplification is still a major challenge. Herein, we proposed a competitive aptasensor strategy for ultrasensitive multiplexed cancer biomarker detection by fluorescent nanoparticle (FNP) counting.
View Article and Find Full Text PDFFor multiplexed detection, it is important yet challenging to simultaneously meet the requirement of sensitivity, throughput, and implementation convenience for practical applications. Using the detection of DNAs and miRNAs for illustration, we present a colocalized particle counting platform that can realize the separation-free multiplexed detection of 6 nucleic acid targets with a zeptomole sensitivity and a dynamic range of up to 5 orders of magnitude. The presence of target induces the formation of a sandwich nanostructure via hybridization; thus, there is an occurrence of colocalization of two microbeads with two different colors.
View Article and Find Full Text PDFA sensitive on-site bacterial detection strategy is presented that integrates the broad-spectrum capturing feature of ε-polylysine-functionalized magnetic nanoparticles with an in-house built portable fluorometer. Based on the electrostatic interaction, the functionalized magnetic nanoparticles (ε-PL-MNPs) were prepared for Gram-positive and Gram-negative bacterial separation and subsequent viable release. ε-PL-MNPs show a broad reactivity towards bacteria with the high capture efficiency from real-world sample media.
View Article and Find Full Text PDFDirect observation of nanoparticles with high spatial resolution at subcellular levels is of great importance to understand the nanotoxicology and promote the biomedical applications of nanoparticles. Super-resolution fluorescence microscopy can break the diffraction resolution limit to achieve spatial resolution of tens of nanometers, making it ideal for highly accurate observation of nanoparticles in the cellular world. In this study, we introduced the employment of super-resolution fluorescence imaging for monitoring nanoparticles within cells.
View Article and Find Full Text PDF