Publications by authors named "Yurong Yan"

Purpose: This study aimed to examine the impact of high-risk cytogenetic abnormalities (HRA) on the survival outcomes of multiple myeloma patients with extramedullary disease (EMD) in the era of novel agents, utilizing the largest dataset of extramedullary multiple myeloma patients in China.

Methods: This study included a total of 371 patients with EMD, comprising 113 patients with de novo EME and 258 patients with EMB.

Results: Patients with one HRA and those with ≥ 2 HRA demonstrated significantly worse overall survival (OS) (P < 0.

View Article and Find Full Text PDF

Gel with ionic conductivity and stretchability is considered as an ideal alternative to conventional rigid metallic conductors in the flexible electronics. However, present gels suffer from poor mechanical properties and crack sensitivity due to their weak intermolecular (chain) interactions and homogeneous network structure. Herein, a transparent and tough polyacrylamide (PAM) ionogel is designed, which can form stress-induced microphase-separated domains with high hydrogen bonding density under stress to inhibit crack propagation.

View Article and Find Full Text PDF

The tendon-bone junction (TBJ), a critical transitional zone where tendons and bones connect, is particularly prone to injury due to the forces from muscle contractions and skeletal movements. Once tendon-bone injuries occur, the complex original tissue structure is difficult to restore, increasing the risk of re-tear. In this study, we initially established a rabbit model of tendon-bone injury and treated it using either interference screw or suture anchor.

View Article and Find Full Text PDF

Background: Minimal residual disease (MRD) testing is a promising approach to tailor the treatment of multiple myeloma (MM). However, several major concerns remain to be addressed before moving it into daily practice, most of which stem from the dynamic nature of the MRD status. Thus, it is crucial to understand the MRD dynamics and propose its clinical implications.

View Article and Find Full Text PDF

It remains a substantial challenge to balance treatment efficacy and toxicity in geriatric patients with multiple myeloma (MM), primarily due to the dynamic nature of frailty. Here, we conducted a prospective study to evaluate the feasibility and benefits of dynamic frailty-tailored therapy (DynaFiT) in elderly patients. Patients with newly diagnosed MM (aged ≥ 65 years) received eight induction cycles of bortezomib, lenalidomide, and dexamethasone (daratumumab was recommended for frail patients), with treatment intensity adjusted according to longitudinal changes in the frailty category (IMWG-FI) at each cycle.

View Article and Find Full Text PDF

The CRISPR/Cas12a system is emerging as a promising candidate for next-generation diagnostic biosensing platforms, with the discovery of new activation modes greatly expanding its applications. Here, we have identified two novel CRISPR/Cas12a system activation modes: PAM- and toehold-free DNA hairpins, and DNA-RNA hybrid strands. Utilizing a well-established real-time fluorescence method, we have demonstrated a strong correlation between DNA hairpin structures and Cas12a activation.

View Article and Find Full Text PDF

Enhancing the sensitivity of capacitive pressure sensors through microstructure design may compromise the reliability of the device and rely on intricate manufacturing processes. It is an effective way to solve this issue by balancing the intrinsic properties (elastic modulus and dielectric constant) of the dielectric layer materials. Here, we introduce a liquid metal (LM) hybrid elastomer prepared by a chain-extension-free polyurethane (PU) and LM.

View Article and Find Full Text PDF

Ideal hydrogel fibers with high toughness and environmental tolerance are indispensable for their long-term application in flexible electronics as actuating and sensing elements. However, current hydrogel fibers exhibit poor mechanical properties and environmental instability due to their intrinsically weak molecular (chain) interactions. Inspired by the multilevel adjustment of spider silk network structure by ions, bionic hydrogel fibers with elaborated ionic crosslinking and crystalline domains are constructed.

View Article and Find Full Text PDF
Article Synopsis
  • CRISPR/Cas12a-based assays are being used for molecular diagnostics but typically need to convert RNA to DNA, complicating the detection process.
  • Researchers discovered that certain chimeric DNA-RNA hybrids could activate the Cas12a enzyme directly, which led to the development of a new method for detecting RNA without the need for DNA conversion.
  • The new SNA-Cas12a strategy allows for sensitive and specific detection of miR-155 at low concentrations, simplifying the diagnostic process and expanding the use of CRISPR technology in RNA detection.*
View Article and Find Full Text PDF

Single atom catalysts (SACs) are highly favored in Li-S batteries due to their excellent performance in promoting the conversion of lithium polysulfides (LiPSs) and inhibiting their shuttling. However, the intricate and interrelated microstructures pose a challenge in deciphering the correlation between the chemical environment surrounding the active site and its catalytic activity. Here, a novel SAC featuring a distinctive Mn-N-Cl moiety anchored on B, N co-doped carbon nanotubes (MnNCl@BNC) is synthesized.

View Article and Find Full Text PDF

Hydrogel fibers have attracted substantial interest for application in flexible electronics due to their ionic conductivity, high specific surface area, and ease of constructing multidimensional structures. However, universal continuous spinning methods for hydrogel fibers are yet lacking. Based on the hydrophobic mold induced regional heterogeneous polymerization, a universal self-lubricating spinning (SLS) strategy for the continuous fabrication of hydrogel fibers from monomers is developed.

View Article and Find Full Text PDF

Background: Short videos are becoming increasingly popular globally, and users are devoting more time to viewing them. However, few studies have examined the characteristics of short video content and the technical features that are related to media use. The present study developed a model to explore the influence of technological affordances on short video usage and considered innovation in terms of format, setting, and content.

View Article and Find Full Text PDF

As the most promising candidate for lithium-ion batteries (LIBs), the electrochemical performance of sodium-ion batteries (SIBs) is highly dependent on the electrode materials. Copper selenides have established themselves as potential anode materials for SIBs due to their high theoretical capacity and good conductivity. However, the poor rate performance and fast capacity fading are the major challenges to their practical application in SIBs.

View Article and Find Full Text PDF

Hard carbon is the most promising anode for potassium-ion batteries (PIBs) due to its low cost and abundance, but its limited storage capacity remains a major challenge. Herein, edge coordination of metal single atoms is proved to be an effective strategy for promoting potassium storage in hard carbon for the first time, taking B, N co-doped hard carbon nanotubes anchored by edge Ni-N -B atomic sites (Ni@BNHC) as an example. It is revealed that edge Ni-N -B can provide active sites for interlayer adsorption of K and that Ni atoms can facilitate the reversibility of K storage on N and B atoms.

View Article and Find Full Text PDF

Mobile Internet technology has developed so rapidly that the Internet has become indispensable in everyday life. There is a continuous debate about the relationship between internet use and subjective well-being. In contrast to observing whether one has Internet access, this paper focuses on three dimensions of Internet usage: frequency of use, online relationship size, and Internet proficiency.

View Article and Find Full Text PDF

Lin et Li, 1990 belongs to Coleoptera, Curculionidae, Curculioninae, Anthonomini. It is a herbivorous insect that damages Blume (Ulmaceae) by affecting branch growth. The mitochondrial genome of was sequenced and annotated to better identify and related species.

View Article and Find Full Text PDF

1q gain (+1q) is the most common high-risk cytogenetic abnormality (HRCA) in patients with multiple myeloma (MM). However, its prognostic value remains unclear in the era of novel agents. Here, we retrospectively analyzed the impact of +1q on the outcomes of 934 patients newly diagnosed with MM.

View Article and Find Full Text PDF

Flap endonuclease 1 (FEN1), a structure-selective endonuclease essential for DNA replication and repair, has been considered as a new promising marker for early cancer diagnosis. However, reliable, sensitive and convenient biosensors for FEN1 detection are still technically challenging. Herein, a fluorometric biosensor based on target-induced primer extension to initiate the collateral cleavage of CRISPR/Cas12a has been established for ultrasensitive and specific detection of FEN1 activity.

View Article and Find Full Text PDF

Metallic Bi, as an alloying-type anode material, has demonstrated tremendous potential for practical application of potassium-ion batteries. However, the giant volume expansion, severe structure pulverization, and sluggish dynamics of Bi-based materials result in unsatisfied rate performance and unstable cycling stability. Here, 2D bismuth@N-doped carbon sheets with BiOC bond and internal void space (2D Bi@NOC) are successfully fabricated via a self-template strategy to address these issues, which own ultrafast electrochemical kinetics and impressive long-term cycling stability for delivering an admirable capacity of 341.

View Article and Find Full Text PDF

Hydrogen bond interactions are important for nylon fibers, which improve its mechanical properties and crystallization behavior, while hindering the movement and orientation of the molecular chain during the drawn process. In this study, hexamethylene adipamide was used as the second monomer in copolymerization with ε-caprolactam to obtain copolyamide 6/66 (CoPA), and high-tenacity fibers with a maximum value up to 8.0 cN/dtex were achieved by a multi-step drawn and thermal setting process.

View Article and Find Full Text PDF

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a, which exhibits excellent target DNA-activated -cleavage activity under the guidance of a programmable CRISPR RNA (crRNA), has shown great promise in next-generation biosensing technology. However, current CRISPR-Cas12a-based biosensors usually improve sensitivity by the initial nucleic acid amplification, while the distinct programmability and predictability of the crRNA-guided target binding process has not been fully exploited. Herein, we, for the first time, propose a modular and sensitive CRISPR-Cas12a fluorometric aptasensor by integrating an enzyme-free and robust crRNA-mediated catalytic nucleic acid network, namely, Cas12a-CMCAN, in which crRNA acts as an initiator to actuate cascade toehold-mediated strand displacement reactions (TM-SDRs).

View Article and Find Full Text PDF

A pyridobisimidazole unit was introduced into a polymer backbone to obtain an increased doping level, a high number of interacting sites with phosphoric acid and simple processibility. The acid uptake of poly(pyridobisimidazole) (PPI) membrane could reach more than 550% (ADL = 22), resulting in high conductivity (0.23 S·cm at 180 °C).

View Article and Find Full Text PDF