Micro-light-emitting diodes (µLEDs) hold significant promise for applications in displays and visible light communication (VLC). This study substantiates the viability of a wavelength division multiplexing (WDM)-VLC system using InGaN blue, green, and red µLED devices. The devices exhibited notable color stability and high modulation bandwidth due to the weakly polarized electric field in the blue and green semipolar devices and the stress-optimized structure in the red device.
View Article and Find Full Text PDFA composite strain-modulation strategy to achieve high-performing green µ-LED devices for visible light communication is proposed. Compared with the conventional pre-well structure, introducing a pre-layer to enlarge the lateral lattice constant of the underlayer decreased the strain in the overall strain-modulated layer and MQW. This improved the crystal quality and suppressed the quantum confinement Stark effect.
View Article and Find Full Text PDFThe effects of different p-GaN layer thickness on the photoelectric and thermal properties of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) were investigated. The results revealed that appropriate thinning of the p-GaN layer enhances the photoelectric performance and thermal stability of DUV-LEDs, reducing current crowding effects that affect the external quantum efficiency and chip heat dissipation. The ABC + f(n) model was used to analyse the EQE, which helped in identifying the different physical mechanisms for DUV-LEDs with different p-GaN layer thickness.
View Article and Find Full Text PDFCurrently available monotherapies of oral nucleoside/nucleotide analogs or interferon are unable to achieve a sustained and effective response in most of patients with chronic hepatitis B (CHB). The objective of the present study was to compare the efficacy and safety of pegylated interferon (Peg-IFN) alpha-2b plus adefovir dipivoxil combination therapy versus Peg-IFN alpha-2b alone. Sixty-one HBeAg-positive chronic hepatitis B patients were randomized to receive Peg-IFN alpha-2b alone (1.
View Article and Find Full Text PDFIn this study, we present a new method to fabricate large-area two-dimensionally (2D) ordered gold nanobowl arrays based on 3D colloidal crystals by wet chemosynthesis, which combines the advantages of a very simple preparation and an applicability to "real" nanomaterials. By combination of in situ growth of gold nanoshell (GNSs) arrays based on three-dimensional (3D) colloidal silica crystals, a monolayer ordered reversed GNS array (2D ordered GNS array) was conveniently manufactured by an acrylic ester modified biaxial oriented polypropylene (BOPP). 2D ordered gold nanobowl array with adjustable periodic holes, good stability, reproducibility, and repeatability could be obtained when the silica core was etched by HF solution.
View Article and Find Full Text PDF