Although microtubule inhibitors (MTI) remain a therapeutically valuable payload option for antibody-drug conjugates (ADC), some cancers do not respond to MTI-based ADCs. Efforts to fill this therapeutic gap have led to a recent expansion of the ADC payload "toolbox" to include payloads with novel mechanisms of action such as topoisomerase inhibition and DNA cross-linking. We present here the development of a novel DNA mono-alkylator ADC platform that exhibits sustained tumor growth suppression at single doses in MTI-resistant tumors and is well tolerated in the rat upon repeat dosing.
View Article and Find Full Text PDFAntibody-drug conjugates (ADC) achieve targeted drug delivery to a tumor and have demonstrated clinical success in many tumor types. The activity and safety profile of an ADC depends on its construction: antibody, payload, linker, and conjugation method, as well as the number of payload drugs per antibody [drug-to-antibody ratio (DAR)]. To allow for ADC optimization for a given target antigen, we developed Dolasynthen (DS), a novel ADC platform based on the payload auristatin hydroxypropylamide, that enables precise DAR-ranging and site-specific conjugation.
View Article and Find Full Text PDFPyrrolobenzodiazepine (PBD) dimers are well-known highly potent antibody drug conjugate (ADC) payloads. The corresponding PBD monomers, in contrast, have received much less attention from the ADC community. We prepared several novel polyamide-linked PBD monomers and evaluated their utility as ADC payloads.
View Article and Find Full Text PDFTarget selection for antibody-drug conjugates (ADC) frequently focuses on identifying antigens with differential expression in tumor and normal tissue, to mitigate the risk of on-target toxicity. However, this strategy restricts the possible target space. SLC34A2/NaPi2b is a sodium phosphate transporter expressed in a variety of human tumors including lung and ovarian carcinoma, as well as the normal tissues from which these tumors arise.
View Article and Find Full Text PDFAfter significant effort over the last 30 years, antibody-drug conjugates (ADC) have recently gained momentum as a therapeutic modality, and nine ADCs have been approved by the FDA to date, with additional ADCs in late stages of development. Here, we introduce dolaflexin, a novel ADC technology that overcomes key limitations of the most common ADC platforms with two key features: a higher drug-to-antibody ratio and a novel auristatin with a controlled bystander effect. The novel, cell permeable payload, auristatin F-hydroxypropylamide, undergoes metabolic conversion to the highly potent, but less cell permeable auristatin F to balance the bystander effect through drug trapping within target cells.
View Article and Find Full Text PDFAntibody-drug conjugates (ADC) are an emerging drug class that uses antibodies to improve cytotoxic drug targeting for cancer treatment. ADCs in current clinical trials achieve a compromise between potency and physicochemical/pharmacokinetic properties by conjugating potent cytotoxins directly to an antibody at a 4:1 or less stoichiometric ratio. Herein, we report a novel, polyacetal polymer-based platform for creating ADC that use poly-1-hydroxymethylethylene hydroxymethyl-formal (PHF), also known as Fleximer.
View Article and Find Full Text PDFAn overview of XMT-1001 is provided in the context of other topoisomerase I inhibitors conjugated to polymers or encapsulated in liposomes. XMT-1001 is a novel polymeric pro-drug derivative of camptothecin (CPT) with a molecular weight of 70 kDa, in which CPT is chemically tethered to a hydrophilic, biodegradable polyacetal polymer, poly(1-hydroxymethylethylene hydroxymethylformal), also called PHF or Fleximer(R). XMT-1001 releases CPT via intermediates camptothecin-20-O-(N-succinimidoglycinate) (CPT-SI), and camptothecin-20-O-(N-succinamidoyl-glycinate) (CPT-SA) over an extended time period.
View Article and Find Full Text PDFNon-bioadhesive, fully biodegradable soluble polymers would be very instrumental in advanced biomedical applications, such as gene and drug delivery and tissue engineering. However, rational development of such materials is hindered by the complexity of macromolecule interactions with biological milieu. The prevalence of carbohydrates in naturally occurring interface structures suggests an alternative, biomimetic approach.
View Article and Find Full Text PDFModification of proteins with hydrophilic polymers is an effective strategy for regulation of protein pharmacokinetics. However, conjugates of slowly or non-biodegradable materials, such as poly(ethylene glycol), are known to cause long-lasting cell vacuolization, in particular in renal epithelium. Conjugates of more degradable polymers, e.
View Article and Find Full Text PDFLymph nodes are primary germination and proliferation sites for many types of pathogens. Maintaining therapeutic levels of appropriate chemotherapeutic agents in the lymph node tissue is critical for the treatment of both infection and cancer. This study was intended to develop a systemic route for loading lymph node phagocytes with drugs, using a lymph node specific nanocarrier.
View Article and Find Full Text PDFBackground: Contaminated surfaces can act as a reservoir for pathogenic microorganisms and potentially exacerbate the risk of infection. Surface disinfection and decontamination provide temporary amelioration against bacterial colonization. Disinfected surfaces eventually become contaminated, thus, mitigating the benefit of the initial disinfection.
View Article and Find Full Text PDF