Publications by authors named "Yuriy Zakharko"

The functionalization of semiconducting single-walled carbon nanotubes (SWNTs) with sp defects that act as luminescent exciton traps is a powerful means to enhance their photoluminescence quantum yield (PLQY) and to add optical properties. However, the synthetic methods employed to introduce these defects are currently limited to aqueous dispersions of surfactant-coated SWNTs, often with short tube lengths, residual metallic nanotubes, and poor film-formation properties. In contrast to that, dispersions of polymer-wrapped SWNTs in organic solvents feature unrivaled purity, higher PLQY, and are easily processed into thin films for device applications.

View Article and Find Full Text PDF

In this work, we examine the effect of microstructure on ion-migration-induced photoluminescence (PL) quenching in methylammonium lead iodide perovskite films. Thin films were fabricated by two methods: spin-coating, which results in randomly oriented perovskite grains, and zone-casting, which results in aligned grains. As an external bias is applied to these films, migration of ions causes a quenching of the PL signal in the vicinity of the anode.

View Article and Find Full Text PDF

Strong coupling between plasmons and excitons leads to the formation of plexcitons: quasiparticles that combine nanoscale energy confinement and pronounced optical nonlinearities. In addition to these localized modes, the enhanced control over the dispersion relation of propagating plexcitons may enable coherent and collective coupling of distant emitters. Here, we experimentally demonstrate strong coupling between carbon nanotube excitons and spatially extended plasmonic modes formed via diffractive coupling of periodically arranged gold nanoparticles (nanodisks, nanorods).

View Article and Find Full Text PDF

We demonstrate the formation and tuning of charged trion-polaritons in polymer-sorted (6,5) single-walled carbon nanotubes in a planar metal-clad microcavity at room temperature. The positively charged trion-polaritons were induced by electrochemical doping and characterized by angle-resolved reflectance and photoluminescence spectroscopy. The doping level of the nanotubes within the microcavity was controlled by the applied bias and thus enabled tuning from mainly excitonic to a mixture of exciton and trion transitions.

View Article and Find Full Text PDF

Dense layers of semiconducting single-walled carbon nanotubes (SWNTs) serve as electrochromic (EC) materials in the near-infrared with high optical density and high conductivity. EC cells with tunable notch filter properties instead of broadband absorption are created via highly selective dispersion of specific semiconducting SWNTs through polymer-wrapping followed by deposition of thick films by aerosol-jet printing. A simple planar geometry with spray-coated mixed SWNTs as the counter electrode renders transparent metal oxides redundant and facilitates complete bleaching within a few seconds through iongel electrolytes with high ionic conductivities.

View Article and Find Full Text PDF

While organic light-emitting diodes (OLEDs) covering all colors of the visible spectrum are widespread, suitable organic emitter materials in the near-infrared (nIR) beyond 800 nm are still lacking. Here, the first OLED based on single-walled carbon nanotubes (SWCNTs) as the emitter is demonstrated. By using a multilayer stacked architecture with matching charge blocking and charge-transport layers, narrow-band electroluminescence at wavelengths between 1000 and 1200 nm is achieved, with spectral features characteristic of excitonic and trionic emission of the employed (6,5) SWCNTs.

View Article and Find Full Text PDF

The integration of periodic nanodisk arrays into the channel of a light-emitting field-effect transistor leads to enhanced and directional electroluminescence from thin films of purified semiconducting single-walled carbon nanotubes. The maximum enhancement wavelength is tunable across the near-infrared and is directly linked to the periodicity of the arrays. Numerical calculations confirm the role of increased local electric fields in the observed emission modification.

View Article and Find Full Text PDF

Monochiral (7,5) single walled carbon nanotubes (SWCNTs) are integrated into a field effect transistor device in which the built-in electric field at the nanotube/metal contact allows for exciton separation under illumination. Variable wavelength spectroscopy and 2D surface mapping of devices consisting of 10-20 nanotubes are performed in the visible region and a strong correlation between the nanotube's second optical transition (S) and the photocurrent is found. After integration, the SWCNTs are non-covalently modified with three different fluorescent dye molecules with off-resonant absorption maxima at 532 nm, 565 nm, and 610 nm.

View Article and Find Full Text PDF

Exciton-polaritons are hybrid light-matter particles that form upon strong coupling of an excitonic transition to a cavity mode. As bosons, polaritons can form condensates with coherent laser-like emission. For organic materials, optically pumped condensation was achieved at room temperature but electrically pumped condensation remains elusive due to insufficient polariton densities.

View Article and Find Full Text PDF

Hybrid photonic-plasmonic modes in periodic arrays of metallic nanostructures offer a promising trade-off between high-quality cavities and subdiffraction mode confinement. However, their application in electrically driven light-emitting devices is hindered by their sensitivity to the surrounding environment and to charge injecting metallic electrodes in particular. Here, we demonstrate that the planar structure of light-emitting field-effect transistor (LEFET) ensures undisturbed operation of the characteristic modes.

View Article and Find Full Text PDF

Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths.

View Article and Find Full Text PDF

Their high oscillator strength and large exciton binding energies make single-walled carbon nanotubes (SWCNTs) highly promising materials for the investigation of strong light-matter interactions in the near infrared and at room temperature. To explore their full potential, high-quality cavities-possibly with nanoscale field localization-are required. Here, we demonstrate the room temperature formation of plasmon-exciton polaritons in monochiral (6,5) SWCNTs coupled to the subdiffraction nanocavities of a plasmonic crystal created by a periodic gold nanodisk array.

View Article and Find Full Text PDF

We demonstrate broadband tunability of light emission from dense (6,5) single-walled carbon nanotube thin films via efficient coupling to periodic arrays of gold nanodisks that support surface lattice resonances (SLRs). We thus eliminate the need to select single-walled carbon nanotubes (SWNTs) with different chiralities to obtain narrow linewidth emission at specific near-infrared wavelengths. Emission from these hybrid films is spectrally narrow (20-40 meV) yet broadly tunable (∼1000-1500 nm) and highly directional (divergence <1.

View Article and Find Full Text PDF

The ability to confine and manipulate light below the diffraction limit is a major goal of future multifunctional optoelectronic/plasmonic systems. Here, we demonstrate the design and realization of a tunable and localized electrical source of excitons coupled to surface plasmons based on a polymer light-emitting field-effect transistor (LEFET). Gold nanorods that are integrated into the channel support localized surface plasmons and serve as nanoantennas for enhanced electroluminescence.

View Article and Find Full Text PDF

The ability to select and enrich semiconducting single-walled carbon nanotubes (SWNT) with high purity has led to a fast rise of solution-processed nanotube network field-effect transistors (FETs) with high carrier mobilities and on/off current ratios. However, it remains an open question whether it is best to use a network of only one nanotube species (monochiral) or whether a mix of purely semiconducting nanotubes but with different bandgaps is sufficient for high performance FETs. For a range of different polymer-sorted semiconducting SWNT networks, we demonstrate that a very small amount of narrow bandgap nanotubes within a dense network of large bandgap nanotubes can dominate the transport and thus severely limit on-currents and effective carrier mobility.

View Article and Find Full Text PDF

The photoluminescence of as-grown, aligned single-walled carbon nanotubes (SWNTs) on quartz is strongly quenched and barely detectable. Here we show that transferring these SWNTs to another substrate such as clean quartz or glass increases their emission efficiency by up to two orders of magnitude. By statistical analysis of large nanotube arrays we show at what point of the transfer process the emission enhancement occurs and how it depends on the receiving substrate and the employed transfer polymer.

View Article and Find Full Text PDF

For the application of colloidal semiconductor quantum dots in optoelectronic devices, for example, solar cells and light-emitting diodes, it is crucial to understand and control their charge transport and recombination dynamics at high carrier densities. Both can be studied in ambipolar, light-emitting field-effect transistors (LEFETs). Here, we report the first quantum dot light-emitting transistor.

View Article and Find Full Text PDF

Near-infrared emission from semiconducting single-walled carbon nanotubes (SWNTs) usually results from radiative relaxation of excitons. By binding an additional electron or hole through chemical or electrochemical doping, charged three-body excitons, so-called trions, are created that emit light at lower energies. The energy difference is large enough to observe weak trion photoluminescence from doped SWNTs even at room temperature.

View Article and Find Full Text PDF