Targeted DNA integration into known locations in the genome has potential advantages over the random insertional events typically achieved using conventional means of genetic modification. We studied the presence and extent of DNA rearrangements at the junction of plant and transgenic DNA in five lines of suspension cells carrying a site-specific integration of target genes. Two types of templates were used to obtain knock-ins, differing in the presence or absence of flanking DNA homologous to the target site in the genome.
View Article and Find Full Text PDFPlant expression systems are currently regarded as promising alternative platforms for the production of recombinant proteins, including the proteins for biopharmaceutical purposes. However, the accumulation level of a target protein in plant expression systems is still rather low compared with the other existing systems, namely, mammalian, yeast, and cells. To solve this problem, numerous methods and approaches have been designed and developed.
View Article and Find Full Text PDFTargeted DNA integration into known locations in the genome has potential advantages over the random insertional events typically achieved using conventional means of genetic modification. We investigated the possibility of obtaining a suspension cell culture of carrying a site-specific integration of a target gene encoding modified human interferon (dIFN) using endonuclease Cas9. For the targeted insertion, we selected the region of the histone H3.
View Article and Find Full Text PDFIn this chapter we describe cytological techniques to study cytomixis, a process of nuclear migration between plant cells, in squashed plant male meiocytes of Nicotiana tabacum and Secale cereale. To perform immunostaining or fluorescence in situ hybridization (FISH) on meiotic cells involved in cytomixis common protocols are modified. During preparation of specimens for subsequent cytological analysis, it is necessary not only to make DNA and proteins accessible to DNA probes and antibodies, but also to preserve cell cytoplasm.
View Article and Find Full Text PDFDevelopment of effective vaccine candidates against tuberculosis is currently the most important challenge in the prevention of this disease since the BCG vaccine fails to guarantee a lifelong protection, while any other approved vaccine with better efficiency is still absent. The protective effect of the recombinant fusion protein ESAT6-CFP10-dIFN produced in a prokaryotic expression system (Escherichia coli) has been assessed in a guinea pig model of acute tuberculosis. The tested antigen comprises the Mycobacterium tuberculosis (Mtb) proteins ESAT6 and CFP10 as well as modified human γ-interferon (dIFN) for boosting the immune response.
View Article and Find Full Text PDFDevelopment of effective vaccine candidates against tuberculosis (TB) is currently the most important challenge in the prevention of this disease since the BCG vaccine fails to guarantee a lifelong protection, while any other approved vaccine with better efficiency is still absent. The protective effect of the recombinant fusion protein CFP10-ESAT6-dIFN produced in a prokaryotic expression system (Escherichia coli) has been assessed in a guinea pig model of acute TB. The tested antigen comprises the Mycobacterium tuberculosis (Mtb) proteins ESAT6 and CFP10 as well as modified human γ-interferon (dIFN) for boosting the immune response.
View Article and Find Full Text PDFMicrosporogenesis patterns of the polyploid (2n = 4x = 96) and diploid (2n = 2x = 48) Nicotiana tabacum L. (cv. Havana Petit line SR1) plants have been analyzed and compared.
View Article and Find Full Text PDF