Objective: The aim of the present study was to investigate the impact of periodic polyphenol treatment on the ultrastructure and anti-erosive potential of an in-situ formed pellicle.
Methods: Subjects wore intraoral appliances with buccally and palatally fixed bovine enamel specimens. During 6 h of intraoral pellicle formation, 100 ml black tea or tannic acid was applied ex-vivo every 25 min for 5 min.
Objective: The purpose of the present study was to assess the anti-erosive potential of the acquired enamel pellicle formed in situ under the influence of periodic milk or cream treatment.
Methods: The pellicle was formed on bovine enamel specimens in the oral cavity at buccal and palatal sites of upper molars in 6 subjects, using removable acrylic splints. During 6-h of intraoral exposure, splints were removed from the oral cavity every 25 min, treated with milk or cream for 5 min, and subsequently re-inserted into the oral cavity.
Purpose: To assess dental erosion caused by 0.1% and 1.0% citric acid in vitro and to estimate the protective influence of experimentally formed salivary pellicle.
View Article and Find Full Text PDFImmunological and biochemical analyses have shown that alpha-amylase is an essential component of the acquired pellicle. After adsorption, this enzyme might act as a receptor for bacterial adherence. However, data indicating that amylase is bound to the pellicle surface in vivo and thus available for adhering bacteria are rare.
View Article and Find Full Text PDFSalivary pellicle, as previously investigated, protects the enamel surface after certain processes of maturation against the influence of acidic agents. The aim of the present study was to investigate the protective effect of the short-term salivary pellicle formed in situ over periods of 3, 60 and 120 min. Six human volunteers used intraoral acrylic splints with bovine enamel samples fixed at the buccal and palatal sites of the maxillary first molars and second premolars.
View Article and Find Full Text PDFSaliva contacting with solid surfaces in the oral cavity forms a coat termed the pellicle. However, its formation is not fully understood. Although indications for the existence of supramolecular pellicle precursors have been reported, the possible relationship between them and pellicle formation is unclear.
View Article and Find Full Text PDFThe purpose of this study was to evaluate dental erosion in 0.1 and 1.0% citric acid in vitro by several different methods and to assess the protective potential of experimentally formed salivary pellicle (24 h in vitro).
View Article and Find Full Text PDF