Publications by authors named "Yuriy G Khait"

Our recent density functional theory (DFT)-in-DFT embedding protocol, which enforces intersubsystem (or external orbital) orthogonality, is used for the first time to investigate covalent bond dissociation and is shown to do so accurately. Full potential energy curves for the dissociation of a H-O bond in HO and the C-C bond in HC-CH have been constructed using the new embedding method, as have the challenging ionic bonds in LiH and LiF, and were found to match the reference Kohn-Sham (KS)-DFT curves to at least one part in 10. The added constraint of external orbital orthogonality allows for the formulation of an embedding protocol that does not rely on approximate kinetic energy functionals for the evaluation of the so-called nonadditive kinetic potential, does not introduce compensatory potentials, and does not require a total system calculation at any stage.

View Article and Find Full Text PDF

First results on electron densities and energies for a number of molecular complexes with different interaction strengths (ranging from ca. 0.3 to 40 kcal/mol), obtained using our recently introduced DFT-in-DFT embedding equations (i.

View Article and Find Full Text PDF

With relatively simple model spaces derived from valence bond models, a straightforward zero-order Hamiltonian, and the use of moderate-sized Dunning-type correlation consistent basis sets (cc-pVTZ, aug-cc-pVTZ, and cc-pVQZ), the second order generalized Van Vleck perturbation theory (GVVPT2) method is shown to produce potential energy curves (PECs) and spectroscopic constants close to experimental results for both ground and low-lying excited electronic states of Sc(2), Cr(2) and Mn(2). In spite of multiple quasidegeneracies (particularly for the cases of Sc(2) and Mn(2)), the GVVPT2 PECs are smooth with no discontinuities. Since these molecules have been identified as ones that widely used perturbative methods are inadequate for describing well, due to intruder state problems, unless shift parameters are introduced that can obfuscate the physics, this study suggests that the conclusion about the inadequacy of multireference perturbation theory be re-evaluated.

View Article and Find Full Text PDF

A Lagrangian based approach was used to obtain analytic formulas for GVVPT2 energy nuclear gradients. The formalism can use either complete or incomplete model (or reference) spaces, and is limited, in this regard, only by the capabilities of the MCSCF program. An efficient means of evaluating the gradient equations is described.

View Article and Find Full Text PDF

A theoretical treatment of the photodissociation of the molecular ion Li(2) (+) in one-color intense laser fields, using the time-dependent wave packet approach in a Floquet Born-Oppenheimer representation, is presented. Six electronic states 1,2 (2)Σ(g)(+), 1,2 (2)Σ(u)(+), 1 (2)Π(g), and 1 (2)Π(u) are of relevance in this simulation and have been included. The dependences of the fragmental dissociation probabilities and kinetic energy release (KER) spectra on pulse width, peak intensity, polarization angle, wavelength, and initial vibrational level are analyzed to interpret the influence of control parameters of the external field.

View Article and Find Full Text PDF

Using the technique of Perdew and Levy [Phys. Rev. B 31, 6264 (1985)], it is shown that both the density function theory (DFT)-in-DFT and wave function theory (WFT)-in-DFT embedding approaches are formally correct in studying not only the ground state but also a subset of the excited states of the total system.

View Article and Find Full Text PDF

The second-order generalized Van Vleck perturbation theory (GVVPT2) variant of multireference perturbation theory was used to investigate the ground and low-lying excited electronic states of [3,3'] bidiazirinylidene (C(2)N(4)). C(2)N(4) is arguably the simplest molecule with multiple CN(2) rings. Equilibrium geometries and adiabatic energy differences of the 1(1)A(g) ground state and 2 (1)A(g), 1(1)B(1g), 1(3)B(1g), 1(1)B(2g), 1(3)B(2g), 1(1)B(3g), 1(3)B(3g), 1(1)B(2u), 1(3)B(2u), 1(1)B(3u), and 1(3)B(3u) excited states of D(2h) symmetry were obtained.

View Article and Find Full Text PDF

Possible mechanisms for the NCO + HCNO reaction, previously studied using single reference methods, have been revisited using the second-order generalized Van Vleck perturbation theory (GVVPT2) variant of multireference perturbation theory. Large scale GVVPT2 calculations, with 25 active orbitals, demonstrate that the electronic structures of the ground states of all eight previously identified plausible doublet spin intermediates of this reaction are substantially multiconfigurational with maximum configuration amplitudes not larger than 0.87.

View Article and Find Full Text PDF

A new, efficient, configuration-driven algorithm utilizing the unitary group approach (UGA) was developed and implemented for the generalized van Vleck perturbation theory (GVVPT) variant of multireference perturbation theory. The computational speed has been improved by 1 or 2 orders of magnitude compared to the previous implementation based on the Table-CI technique. It is shown that the reformulation is applicable to both the second-order (GVVPT2) and third-order (GVVPT3) approximations.

View Article and Find Full Text PDF

The Floquet states of N(2) (2+) created by the interactions of the six lowest singlet (1 (1)Sigma(g) (+), 1 (1)Delta(g), 2 (1)Sigma(g) (+), 1 (1)Pi(u), 1 (1)Pi(g), and 1 (1)Sigma(u) (-)) states of the dication with intense (0.4 x 10(13) Wcm(2)) radiation have been studied using the recently developed multireference configuration interaction method with single and double excitations (MRCISD)-based approach. The adiabatic Floquet state coinciding near its minimum with the initial X (1)Sigma(g) (+) ground state and asymptotically correlating with A (1)Pi(u) (m = -1), i.

View Article and Find Full Text PDF

A multireference configuration interaction (CI) method which includes single and double excitations based description of adiabatic Floquet states for the electronic structure of a molecule in an intense laser field is introduced. Using a variant of a recently introduced configuration state function (CSF) based Table-CI methodology, it is shown that the multiple states of several irreducible representations required for a good description of low-lying Floquet states can be obtained using modifications of computational molecular electronic structure techniques. In particular, formulas for all components of the transition dipole moment matrix elements within the CSF-based Table-CI method are derived and presented.

View Article and Find Full Text PDF

A new Kohn-Sham formalism is developed for studying the lowest molecular electronic states of given space and spin symmetry whose densities are represented by weighted sums of several reference configurations. Unlike standard spin-density functional theory, the new formalism uses total spin conserving spin-density operators and spin-invariant density matrices so that the method is fully spin-adapted and solves the so-called spin-symmetry dilemma. The formalism permits the use of an arbitrary set of reference (noninteracting) configurations with any number of open shells.

View Article and Find Full Text PDF