Cell-based models provide a helpful approach for simulating complex systems that exhibit adaptive, resilient qualities, such as cancer. Their focus on individual cell interactions makes them a particularly appropriate strategy to study cancer therapies' effects, which are often designed to disrupt single-cell dynamics. In this work, we propose them as viable methods for studying the time evolution of cancer imaging biomarkers (IBM).
View Article and Find Full Text PDFThis paper studies the epigenetic process that leads to Angiosperms' flower architecture (flowering plants). As a case study, we analyze the flower Arabidopsis thaliana's GRN obtained during cell fate determination in the early stages of the flower's development, which was constructed in a previous work using experimental data. We start by constructing and analyzing the Epigenetic Forest, a discrete representation of Waddington's Epigenetic Landscape, obtained as the transition graph of the discrete dynamical system associated with the GRN.
View Article and Find Full Text PDFWe model the process of cell fate determination of the flower Arabidopsis-thaliana employing a system of reaction-diffusion equations governed by a potential field. This potential field mimics the flower's epigenetic landscape as defined by Waddington. It is derived from the underlying genetic regulatory network (GRN), which is based on detailed experimental data obtained during cell fate determination in the early stages of development of the flower.
View Article and Find Full Text PDFUnderstanding the emergence of biological structures and their changes is a complex problem. On a biochemical level, it is based on gene regulatory networks (GRN) consisting on interactions between the genes responsible for cell differentiation and coupled in a greater scale with external factors. In this work we provide a systematic methodological framework to construct Waddington's epigenetic landscape of the GRN involved in cellular determination during the early stages of development of angiosperms.
View Article and Find Full Text PDFA central issue in developmental biology is to uncover the mechanisms by which stem cells maintain their capacity to regenerate, yet at the same time produce daughter cells that differentiate and attain their ultimate fate as a functional part of a tissue or an organ. In this paper we propose that, during development, cells within growing organs obtain positional information from a macroscopic physical field that is produced in space while cells are proliferating. This dynamical interaction triggers and responds to chemical and genetic processes that are specific to each biological system.
View Article and Find Full Text PDFIn contrast to the classical view of development as a preprogrammed and deterministic process, recent studies have demonstrated that stochastic perturbations of highly non-linear systems may underlie the emergence and stability of biological patterns. Herein, we address the question of whether noise contributes to the generation of the stereotypical temporal pattern in gene expression during flower development. We modeled the regulatory network of organ identity genes in the Arabidopsis thaliana flower as a stochastic system.
View Article and Find Full Text PDF