Aims: Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, has been reported to be a novel marker for the progression of chronic kidney disease (CKD). We have recently found that accumulation of ADMA could trigger peritubular capillary loss, thus contributing to tubulointerstitial ischemia and fibrosis in a rat model of CKD. However, effects of ADMA on glomerular capillary loss and sclerosis remain to be elucidated.
View Article and Find Full Text PDFBackground: Pigment epithelium-derived factor (PEDF) is a glycoprotein with potent neuronal differentiating activity. We, along with others, have recently found that PEDF inhibits retinal hyperpermeability by counteracting the biological effects of vascular endothelial growth factor (VEGF). However, the protective role of PEDF against nephrotic syndrome (NS), a condition of hyperpermeability in the glomerular capillaries, remains to be elucidated.
View Article and Find Full Text PDFEndothelial dysfunction due to the reduced bioavailability of nitric oxide (NO) is involved in the course of atherosclerotic cardiovascular disease as well as chronic kidney disease (CKD). NO is synthesized from L-arginine via the action of NO synthase, which is blocked by endogenous L-arginine analogues such as asymmetric dimethylarginine (ADMA). ADMA is a naturally occurring amino acid found in plasma and various types of tissues.
View Article and Find Full Text PDFAsymmetric dimethylarginine (ADMA), an endogenous nitric oxide synthase inhibitor, is mainly degraded by dimethylarginine dimethylaminohydrolase (DDAH). It was recently reported that reduced DDAH expression could contribute to ADMA accumulation and subsequent elevation of BP in an experimental model of chronic kidney disease (CKD). ADMA is a strong predictor of the progression of CKD as well.
View Article and Find Full Text PDFAdvanced glycation end products (AGEs) are senescent macroprotein derivatives that are formed at an accelerated rate in patients with chronic renal failure (CRF). AGE formation and accumulation in plasma and vascular tissues contribute to accelerated atherosclerosis in this devastating disorder. AST-120 is an oral adsorbent that attenuates the progression of CRF by removing uremic toxins.
View Article and Find Full Text PDF