Publications by authors named "Yuriko Komine"

Article Synopsis
  • - Increased lactate levels from glycolysis are being studied as potential markers for metabolic changes in neurons, linked to a drop in brain pH, which has been associated with various neuropsychiatric disorders like schizophrenia and autism.
  • - Research shows that these pH and lactate changes are common across different animal models, including those for depression, epilepsy, and Alzheimer's disease, though findings vary, particularly within the autism spectrum.
  • - A large-scale analysis indicated that higher lactate levels correlate with worse working memory performance, suggesting that altered brain chemistry might reflect underlying conditions across multiple disorders.
View Article and Find Full Text PDF
Article Synopsis
  • Chronic pain affects many people around the world and makes life difficult for them, but not much new medicine has been made to help.
  • Scientists studied a special family with members who can't feel pain and found a change in a gene called ZFHX2 that might be key to their condition.
  • By looking at mice with a similar gene change, researchers learned more about how pain works and found new ways to create medicines that could help people with chronic pain.
View Article and Find Full Text PDF

Zfhx2 (also known as zfh-5) encodes a transcription factor containing three homeobox domains and 18 Zn-finger motifs. We have reported that Zfhx2 mRNA is expressed mainly in differentiating neurons in the mouse brain and its expression level is negatively regulated by the antisense transcripts of Zfhx2. Although the expression profile of Zfhx2 suggests that ZFHX2 might have a role in a particular step of neuronal differentiation, the specific function of the gene has not been determined.

View Article and Find Full Text PDF

Here, we report features of a novel transcription factor zfh-5, which we isolated from the mouse brain; in addition to the mRNA, the antisense strand of zfh-5 is also expressed in the developing brain, in a manner complementary to the expression of zfh-5 mRNA. Although most neurons express zfh-5 mRNA soon after their final mitosis, several types of neurons, such as the pyramidal and granule cells in the hippocampus, express the zfh-5 antisense RNA prior to the mRNA expression. Using gene-targeting approach, we showed that this antisense RNA has a negative regulatory role on the expression of zfh-5 mRNA.

View Article and Find Full Text PDF