Publications by authors named "Yurika Saitoh"

Article Synopsis
  • The protein 4.1 and membrane palmitoylated protein (MPP) families are crucial for maintaining the stability of erythrocyte (red blood cell) membranes by connecting various proteins and structures beneath the membrane.
  • Recent research shows that these membrane skeletal systems are also found throughout various cells and tissues, influencing interactions with proteins like adhesion molecules and receptors that affect cellular processes.
  • This review focuses on studies of genetically modified animals to examine the specific roles of proteins 4.1G, MPP6, and MPP2 in the peripheral and central nervous systems, as well as in reproductive and bone formation functions, highlighting the importance of understanding their molecular relationships.
View Article and Find Full Text PDF

We previously reported that the membrane skeletal protein 4.1G in the peripheral nervous system transports membrane palmitoylated protein 6 (MPP6), which interacts with the synaptic scaffolding protein Lin7 and cell adhesion molecule 4 (CADM4) in Schwann cells that form myelin. In the present study, we investigated the localization of and proteins related to MPP2, a highly homologous family protein of MPP6, in the cerebellum of the mouse central nervous system, in which neurons are well organized.

View Article and Find Full Text PDF

The primary cilium is a hair-like immotile organelle with specific membrane receptors, including the receptor of Hedgehog signaling, smoothened. The cilium organized in preosteoblasts promotes differentiation of the cells into osteoblasts (osteoblast differentiation) by mediating Hedgehog signaling to achieve bone formation. Notably, 4.

View Article and Find Full Text PDF

The preparation of histological specimens from animals and humans is a multi-step process comprising tissue collection, fixation, and dehydration, followed by paraffin embedding. Each process can be achieved using different methods and substances. For example, dehydration may not be required depending on the substance used for embedding.

View Article and Find Full Text PDF

Hypoxia-inducible factor-1 (HIF-1) plays essential roles in human diseases, though its central role in oxygen homoeostasis hinders the development of direct HIF-1-targeted pharmacological approaches. Here, we surveyed small-molecule compounds that efficiently inhibit the transcriptional activity of HIF-1 without affecting body homoeostasis. We focused on Mint3, which activates HIF-1 transcriptional activity in limited types of cells, such as cancer cells and macrophages, by suppressing the factor inhibiting HIF-1 (FIH-1).

View Article and Find Full Text PDF

Munc-18 interacting protein 3 (Mint3) is an activator of hypoxia-inducible factor-1 in cancer cells, macrophages, and cancer-associated fibroblasts under pathological conditions. However, exactly which cells highly express Mint3 in vivo and whether Mint3 depletion affects their physiological functions remain unclear. Here, we surveyed mouse tissues for specific expression of Mint3 by comparing Mint3 expression in wild-type and Mint3-knockout mice.

View Article and Find Full Text PDF

Pancreatic cancer is one of the most fatal cancers without druggable molecular targets. Hypoxia inducible factor-1 (HIF-1) is a heterodimeric transcriptional factor that promotes malignancy in various cancers including pancreatic cancer. Herein, we found that HIF-1 is accumulated in normoxic or moderate hypoxic areas of pancreatic cancer xenografts in vivo and is active even during normoxia in pancreatic cancer cells in vitro.

View Article and Find Full Text PDF

Cancer cells adapt to various stress conditions by optimizing gene expression profiles via transcriptional and translational regulation. However, whether and how EXOSC9, a component of the RNA exosome complex, regulates adaptation to stress conditions and tumorigenicity in cancer cells remain unclear. Here, we examined the effects of EXOSC9 depletion on cancer cell growth under various stress conditions.

View Article and Find Full Text PDF

Schmidt-Lanterman incisure (SLI) is a circular-truncated cone shape in the myelin internode that is a specific feature of myelinated nerve fibers formed in Schwann cells in the peripheral nervous system (PNS). The SLI circular-truncated cones elongate like spring at the narrow sites of beaded appearance nerve fibers under the stretched condition. In this chapter, we demonstrate various molecular complexes in SLI, and especially focus on membrane skeleton, protein 4.

View Article and Find Full Text PDF

Mitochondrial abnormalities are associated with developmental disorders, although a causal relationship remains largely unknown. Here, we report that increased oxidative stress in neurons by deletion of mitochondrial ubiquitin ligase MITOL causes a potential neuroinflammation including aberrant astrogliosis and microglial activation, indicating that mitochondrial abnormalities might confer a risk for inflammatory diseases in brain such as psychiatric disorders. A role of MITOL in both mitochondrial dynamics and ER-mitochondria tethering prompted us to characterize three-dimensional structures of mitochondria in vivo.

View Article and Find Full Text PDF

The membrane skeletal complex, protein 4.1G-membrane palmitoylated protein 6 (MPP6), is localized in spermatogonia and early spermatocytes of mouse seminiferous tubules. In this study, we investigated the Lin7 family of scaffolding proteins, which interact with MPP6.

View Article and Find Full Text PDF

The high-pressure freezing (HPF) technique is known to cryofix water-containing materials with little ice-crystal formation in deep depths compared with other freezing techniques. In this study, HPF for anesthetized living Drosophila was performed by placing them directly on the carrier of the HPF unit and exposing them to light. Frozen Drosophila were freeze substituted, and their compound eyes were examined by transmission electron microscopy.

View Article and Find Full Text PDF

A membrane skeletal molecular complex, protein 4.1G-membrane palmitoylated protein 6 (MPP6)-Lin7-cell adhesion molecule 4 (CADM4), is incorporated in Schwann cells, especially in Schmidt-Lanterman incisures (SLIs), in the mouse peripheral nervous system (PNS). MPP6, Lin7, and CADM4 are transported to SLIs by 4.

View Article and Find Full Text PDF

Combined analysis of immunostaining for various biological molecules coupled with investigations of ultrastructural features of individual cells is a powerful approach for studies of cellular functions in normal and pathological conditions. However, weak antigenicity of tissues fixed by conventional methods poses a problem for immunoassays. This study introduces a method of correlative light and electron microscopy imaging of the same endocrine cells of compact and diffuse islets from human pancreatic tissue specimens.

View Article and Find Full Text PDF

We previously demonstrated that a membrane skeletal molecular complex, 4.1G-membrane palmitoylated protein 6 (MPP6)-cell adhesion molecule 4, is incorporated in Schwann cells in the peripheral nervous system (PNS). In this study, we evaluated motor activity and myelin ultrastructures in 4.

View Article and Find Full Text PDF

Microglia are the resident macrophages of the central nervous system and play complex roles in the milieu of diseases including the primary diseases of myelin. Although mitochondria are critical for cellular functions and survival in the nervous system, alterations in and the roles of mitochondrial dynamics and associated signaling in microglia are still poorly understood. In the present study, by combining immunohistochemistry and 3D ultrastructural analyses, we show that mitochondrial fission/fusion in reactive microglia is differentially regulated from that in monocyte-derived macrophages and the ramified microglia of normal white matter in myelin disease models.

View Article and Find Full Text PDF

Medical and biological scientists wish to understand the in vivo structures of the cells and tissues that make up living animal organs, as well as the locations of their molecular components. Recently, the live imaging of animal cells and tissues with fluorescence-labeled proteins produced via gene manipulation has become increasingly common. Therefore, it is important to ensure that findings derived from histological or immunohistochemical tissue sections of living animal organs are compatible with those obtained from live images of the same organs, which can be assessed using recently developed digital imaging techniques.

View Article and Find Full Text PDF

Recent advances in serial block-face imaging using scanning electron microscopy (SEM) have enabled the rapid and efficient acquisition of 3-dimensional (3D) ultrastructural information from a large volume of biological specimens including brain tissues. However, volume imaging under SEM is often hampered by sample charging, and typically requires specific sample preparation to reduce charging and increase image contrast. In the present study, we introduced carbon-based conductive resins for 3D analyses of subcellular ultrastructures, using serial block-face SEM (SBF-SEM) to image samples.

View Article and Find Full Text PDF

Serial block-face imaging using scanning electron microscopy enables rapid observations of three-dimensional ultrastructures in a large volume of biological specimens. However, such imaging usually requires days for sample preparation to reduce charging and increase image contrast. In this study, we report a rapid procedure to acquire serial electron microscopic images within 1 day for three-dimensional analyses of subcellular ultrastructures.

View Article and Find Full Text PDF

Advancement of microscopic technologies established significant progress in our understanding of the brain. In the recent effort to elucidate the complete wiring map of the brain circuitry termed 'connectome', the different modalities of imaging technology, including those of light and electron microscopy, have started providing essential contribution in multiple organisms. The contribution would be impossible without the recent innovation in both acquisition and analyses of the big connectomic data.

View Article and Find Full Text PDF

Membrane skeletal networks form a two-dimensional lattice structure beneath erythrocyte membranes. 4.1R-MPP (membrane palmitoylated protein) 1-glycophorin C is one of the basic molecular complexes of the membrane skeleton.

View Article and Find Full Text PDF

The membrane protein palmitoylated (MPP) family belongs to the membrane-associated guanylate kinase (MAGUK) family. MPP1 interacts with the protein 4.1 family member, 4.

View Article and Find Full Text PDF

During early development of the peripheral nervous system, Schwann cell precursors proliferate, migrate, and differentiate into premyelinating Schwann cells. After birth, Schwann cells envelop neuronal axons with myelin sheaths. Although some molecular mechanisms underlying myelination by Schwann cells have been identified, the whole picture remains unclear.

View Article and Find Full Text PDF

In this study, morphological and immunohistochemical alterations of skeletal muscle tissues during persistent contraction were examined by in vivo cryotechnique (IVCT). Contraction of gastrocnemius muscles was induced by sciatic nerve stimulation. The IVCT was performed immediately, 3 min or 10 min after the stimulation start.

View Article and Find Full Text PDF

In postnatal development of the peripheral nervous system (PNS), Schwann cells differentiate to insulate neuronal axons with myelin sheaths, increasing the nerve conduction velocity. To produce the mature myelin sheath with its multiple layers, Schwann cells undergo dynamic morphological changes. While extracellular molecules such as growth factors and cell adhesion ligands are known to regulate the myelination process, the intracellular molecular mechanism underlying myelination remains unclear.

View Article and Find Full Text PDF