Int J Biol Macromol
April 2005
Using methods of IR spectroscopy, light scattering, gel-electrophoresis DNA structural transitions are studied under the action of Cu2+, Zn2+, Mn2+, Ca2+ and Mg2+ ions in aqueous solution. Cu2+, Zn2+, Mn2+ and Ca2+ ions bind both to DNA phosphate groups and bases while Mg2+ ions-only to phosphate groups of DNA. Upon interaction with divalent metal ions studied (except for Mg2+ ions) DNA undergoes structural transition into a compact form.
View Article and Find Full Text PDFThe work examines the structural transitions of DNA under the action of Cu2+ and Ca2+ ions in aqueous solution at temperatures of 29 and 45 degrees C by ir spectroscopy. Upon binding to the divalent ions studied, DNA transits into the compact state both at 29 and 45 degrees C. In the compact state DNA remains in B-form limits.
View Article and Find Full Text PDFInt J Biol Macromol
October 2004
In our previous work we have shown that under the action of Cu2+, Mn2+ and Ca2+ ions DNA is able to transit into a compact state in aqueous solution. In the present work we carried out calculations of binding constants for divalent metal ions interacting with DNA in terms of the macromolecule statistical sum. The formula for calculation of the binding constants and cooperativity parameters was proposed.
View Article and Find Full Text PDFCu(2+) ion interaction with DNA in aqueous solutions containing urea (0-5 M) was studied by IR spectroscopy. It was shown that upon the Cu(2+) ion binding DNA transition into a compact form occurs. This transition is of positive cooperativity.
View Article and Find Full Text PDF