Publications by authors named "Yurii Promovych"

Optical fiber tweezers offer a simple, low-cost and portable solution for non-invasive trapping and manipulation of particles. However, single-fiber tweezers require fiber tip modification (tapering, lensing, ) and the dual-fiber approach demands strict alignment and positioning of fibers for robust trapping of particles. In addition, both tweezing techniques offer a limited range of particle manipulation and operate in low flow velocity regimes (a few 100 μm s) when integrated with microfluidic devices.

View Article and Find Full Text PDF

In this work, we present an innovative, high-throughput rotary wet-spinning biofabrication method for manufacturing cellularized constructs composed of highly-aligned hydrogel fibers. The platform is supported by an innovative microfluidic printing head (MPH) bearing a crosslinking bath microtank with a co-axial nozzle placed at the bottom of it for the immediate gelation of extruded core/shell fibers. After a thorough characterization and optimization of the new MPH and the fiber deposition parameters, we demonstrate the suitability of the proposed system for theengineering of functional myo-substitutes.

View Article and Find Full Text PDF

We demonstrate the utility of non-contact printing to fabricate the mAST-an easy-to-operate, microwell-based microfluidic device for combinatorial antibiotic susceptibility testing (AST) in a point-of-care format. The wells are prefilled with antibiotics in any desired concentration and combination by non-contact printing (spotting). For the execution of the AST, the only requirements are the mAST device, the sample, and the incubation chamber.

View Article and Find Full Text PDF