The extracellular matrix (ECM) is a fundamental component of biological tissues. The ECM in the central nervous system (CNS) is unique in both composition and function. Functions such as learning, memory, synaptogenesis, and plasticity are regulated by numerous ECM molecules.
View Article and Find Full Text PDFCell-based technologies are used as a therapeutic strategy in spinal cord injury (SCI). Mesenchymal stem cells (MSCs), which secrete various neurotrophic factors and cytokines, have immunomodulatory, anti-apoptotic and anti-inflammatory effects, modulate reactivity/phenotype of astrocytes and the microglia, thereby promoting neuroregeneration seem to be the most promising. The therapeutic effect of MSCs is due to a paracrine mechanism of their action, therefore the survival of MSCs and their secretory phenotype is of particular importance.
View Article and Find Full Text PDFPLoS One
August 2016
Objective And Methods: This study investigated the potential for protective effects of human umbilical cord blood mononuclear cells (UCB-MCs) genetically modified with the VEGF and GNDF genes on contusion spinal cord injury (SCI) in rats. An adenoviral vector was constructed for targeted delivery of VEGF and GDNF to UCB-MCs. Using a rat contusion SCI model we examined the efficacy of the construct on tissue sparing, glial scar severity, the extent of axonal regeneration, recovery of motor function, and analyzed the expression of the recombinant genes VEGF and GNDF in vitro and in vivo.
View Article and Find Full Text PDF