The lack of a widely accessible method for expressing genes of interest in wild-type embryos is a fundamental obstacle to understanding genetic regulation during embryonic development. In particular, only a few methods are available for introducing gene expression vectors into cells prior to neural tube closure, which is a period of drastic development for many tissues. In this study, we present a simple technique for injecting vectors into the amniotic cavity and allowing them to reach the ectodermal cells and the epithelia of endodermal organs of mouse embryos at E8.
View Article and Find Full Text PDFThirteen herbal medicines, Kakkonto (TJ-001), Kakkontokasenkyushin'i (TJ-002), Hangekobokuto (TJ-016), Shoseiryuto (TJ-019), Maoto (TJ-027), Bakumondoto (TJ-029), Hochuekkito (TJ-041), Goshakusan (TJ-063), Kososan (TJ-070), Chikujountanto (TJ-091), Gokoto (TJ-095), Saibokuto (TJ-096), and Ryokankyomishingeninto (TJ-119) were tested for human parainfluenza virus type 2 (hPIV-2) replication. Eight (TJ-001, TJ-002, TJ-019, TJ-029, TJ-041, TJ-063, TJ-095 and TJ-119) out of the thirteen medicines had virus growth inhibitory activity. TJ-001 and TJ-002 inhibited virus release, and largely inhibited genome, mRNA and protein syntheses.
View Article and Find Full Text PDFLysosomes are acidic organelles responsible for degrading both exogenous and endogenous materials. The small GTPase Arl8 localizes primarily to lysosomes and is involved in lysosomal function. In the present study, using Arl8b gene-trapped mutant (Arl8b ) mice, we show that Arl8b is required for the development of dorsal structures of the neural tube, including the thalamus and hippocampus.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2014
Axon branching is remodeled by sensory-evoked and spontaneous neuronal activity. However, the underlying molecular mechanism is largely unknown. Here, we demonstrate that the netrin family member netrin-4 (NTN4) contributes to activity-dependent thalamocortical (TC) axon branching.
View Article and Find Full Text PDFMicrobiol Immunol
November 2014
The antiviral activities of eight nucleoside analog antiviral drugs (ribavirin, acyclovir, lamivudine, 3'-azido-3'-deoxythymidine, emtricitabine, tenofovir, penciclovir and ganciclovir) against human parainfluenza virus type 2 (hPIV-2) were investigated. Only ribavirin (RBV) inhibited both cell fusion and hemadsorption induced by hPIV-2. RBV considerably reduced the number of viruses released from the cells.
View Article and Find Full Text PDF