Hydrogels, three-dimensional hydrophilic water-insoluble polymer networks having mechanical properties inherent for solids, have attracted continuous research attention over a long time period. Here, we studied the structure and properties of hydrogel based on gelatin, κ-carrageenan and CNTs using the combination of SAXS, PXRD, AFM microscopy, SEM and rheology methods. We have shown that the integration of polysaccharide and protein in the composite hydrogel leads to suppression of their individual structural features and homogenization of two macromolecular components into a single structural formation.
View Article and Find Full Text PDFWe report microstructural design via control of BaZrO3 (BZO) defect density in high temperature superconducting (HTS) wires based on epitaxial YBa2Cu3O7-δ (YBCO) films to achieve the highest critical current density, Jc, at different fields, H. We find the occurrence of Jc(H) cross-over between the films with 1-4 vol% BZO, indicating that optimal BZO doping is strongly field-dependent. The matching fields, Bφ, estimated by the number density of BZO nanocolumns are matched to the field ranges for which 1-4 vol% BZO-doped films exhibit the highest Jc(H).
View Article and Find Full Text PDFNovel mono- and dicationic pyrimidinic surfactants are synthesized and their aggregation behavior is studied by methods of tensiometry and nuclear magnetic resonance (NMR) self-diffusion. To estimate their potentiality as gene delivery agents, the complexation with oligonucleotides (ONus) is explored by dynamic light scattering (DLS) and zeta-potential titration methods and ethidium bromide exclusion experiments. Bola-type pyrimidinic amphiphile (BPM) demonstrates rather a weak affinity to ONus.
View Article and Find Full Text PDFβ-Lactoglobulin (β-LG) is a lipocalin, which is the major whey protein of cow's milk and the milk of other mammals. However, it is absent from human milk. The biological function of β-LG is not clear, but its potential role in carrying fatty acids through the digestive tract has been suggested.
View Article and Find Full Text PDFWe report measurements of electronic, thermoelectric, and galvanomagnetic properties of individual single crystal antimony telluride (Sb(2)Te(3)) nanowires with diameters in the range of 20-100 nm. Temperature-dependent resistivity and thermoelectric power (TEP) measurements indicate hole dominant diffusive thermoelectric generation with an enhancement of the TEP for smaller diameter wires up to 110 microV/K at T = 300 K. We measure the magnetoresistance in magnetic fields both parallel and perpendicular to the nanowire [110] axis, where strong anisotropic positive magnetoresistance behavior was observed.
View Article and Find Full Text PDFBrownian dynamics simulation has been applied to analyze the influence of the electrostatic field of a reverse micelle on the enzyme-substrate complex formation inside a micelle. The probability that the enzyme-substrate complex will form from serine protease (trypsin) and the specific hydrophilic cationic substrate Nalpha-benzoyl-L: -arginine ethyl ester has been studied within the framework of the encounter complex formation theory. It has been shown that surfactant charge, dipole moments created by charged surfactant molecules and counterions, and permittivity of the inner core of reverse micelles can all be used as regulatory parameters to alter the substrate orientation near the active site of the enzyme and to change the probability that the enzyme-substrate complex will form.
View Article and Find Full Text PDFBeta-casein (beta-CN) is a milk protein widely used in food industries because of its mild emulsifying properties due to its amphiphilicity. However, the elements determining its micellization behavior in solution and interfacial behavior at the air-water interface are not well known. In order to study how the forced dimerisation influences functional properties of beta-CN, recombinant wild-type beta-CN was produced and distal cysteinylated forms of recombinant beta-CN were engineered.
View Article and Find Full Text PDFPhys Rev Lett
March 2009
The conductance and thermoelectric power (TEP) of graphene is simultaneously measured using a microfabricated heater and thermometer electrodes. The sign of the TEP changes across the charge neutrality point as the majority carrier density switches from electron to hole. The gate dependent conductance and TEP exhibit a quantitative agreement with the semiclassical Mott relation.
View Article and Find Full Text PDFWe report measurements of the ab-plane superfluid density n(s) (magnetic penetration depth lambda) of heavily underdoped films of YBa2Cu3O6+x, with T(C)'s from 6 to 50 K. We find the characteristic length for vortex unbinding transition equal to the film thickness, suggesting strongly coupled CuO2 layers. At the lowest dopings, T(C) is as much as 5 times larger than the upper limit set by the 2D Kosterlitz-Thouless-Berezinskii transition temperature calculated for individual CuO2 bilayers.
View Article and Find Full Text PDF